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Hindcasting 
Methods

• Evaluate the performance of models 
by comparing the calculated projections 
with real historical observations 

• In each iteration:
Split historical time series data in
training set and out-of-sample test set

 

Retrospective model testing

Solar PV
Train: 2000 – (2011 … 2021)
Test: (2012 … 2021) – 2021
→ 1- to 10-year-ahead

Heat pumps
Train: 2001 – (2011 … 2021)
Test: (2012 … 2021) – 2021
→ 1- to 10-year-ahead

BEV
Train: 2015 – (2017 … 2021)
Test: (2018 … 2021) – 2021
→ 1- to 4-year-ahead 

MAPE: Mean Absolute Percentage Error

6



RENEWABLE ENERGY SYSTEMS

Probabilistic vs. deterministic projection
Results

7



RENEWABLE ENERGY SYSTEMS

Probabilistic vs. deterministic projection

MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

Results

7



RENEWABLE ENERGY SYSTEMS

Probabilistic vs. deterministic projection

→ Higher accuracy with 
probabilistic projections

Findings

MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

Results

7



RENEWABLE ENERGY SYSTEMS

Probabilistic vs. deterministic projection

→ Higher accuracy with 
probabilistic projections

→ Underestimation of 
deterministic projections

Findings

MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

Results

7



RENEWABLE ENERGY SYSTEMS

Probabilistic vs. deterministic projection

→ Higher accuracy with 
probabilistic projections

→ Underestimation of 
deterministic projections

Findings

MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

Results

ca
pa
ci
ty

year

ca
pa
ci
ty

year

ca
pa
ci
ty

year

ca
pa
ci
ty

year

7



RENEWABLE ENERGY SYSTEMS

Comparison of S-curve models
Results

8



RENEWABLE ENERGY SYSTEMS

MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

Results

Sun, X. et al. (2017), Journal of Meteorological Research, 31(3), 502–513.

8

Comparison of S-curve models



RENEWABLE ENERGY SYSTEMS

→ Higher accuracy and 
precision for 
Bertalanffy and Richards

Findings

MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

Results

Sun, X. et al. (2017), Journal of Meteorological Research, 31(3), 502–513.

8

Comparison of S-curve models



RENEWABLE ENERGY SYSTEMS

Weight:
𝑤 = 1/(𝑚𝑒𝑎𝑛(𝑊𝐼𝑆)!)

            

                adapted from Sun et al. 2017
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→ High sharpness penalty: 
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→ Underestimation and low saturation

• Bertalanffy and Richards models are on average the best performing models
→ Lowest MAPE, WIS, but performance is specific to each municipality

• Based on current dynamics, Switzerland is unlikely to reach net zero targets by 2050

• Highest capacities of solar PV, heat pumps, and BEV are most likely near population centers
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