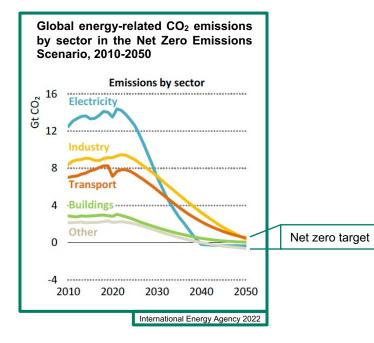
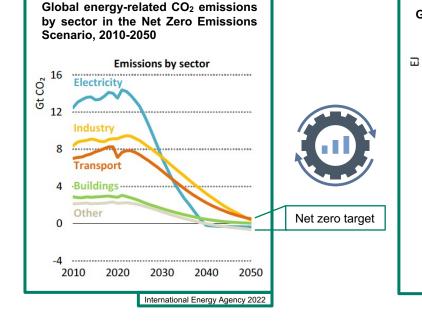

Spatially-explicit probabilistic projections of granular energy technology diffusion at subnational level

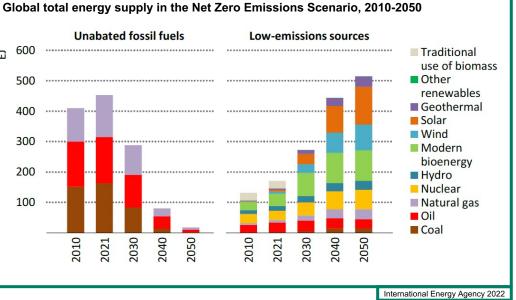
Renewable Energy Systems Institute for Environmental Sciences University of Geneva


18th IAEE European Conference 2023 July 24-27, 2023

 Swiss National Science Foundation Grant no. 186834 (ACCURACY)

International Energy Agency (2022), World Energy Outlook 2022. Trutnevyte, E. (2016), Energy, 106, 182–193.


RENEWABLE ENERGY SYSTEMS


RENEWABLE ENERGY SYSTEMS

Models set energy transition targets for net zero

International Energy Agency (2022), World Energy Outlook 2022. Trutnevyte, E. (2016), Energy, 106, 182–193.

Background

Models set energy transition targets for net zero

Global energy-related CO₂ emissions Global total energy supply in the Net Zero Emissions Scenario, 2010-2050 by sector in the Net Zero Emissions Scenario, 2010-2050 Unabated fossil fuels Low-emissions sources 600 Traditional **Emissions by sector** use of biomass 16 Gt CO₂ Electricity Other 500 renewables 12 Geothermal 400 Solar Wind 8 300 ****** Modern Transport bioenergy 200 Hvdro Buildings Nuclear Natural gas 100 Net zero target Oil 0 Coa 2010 2021 2030 2040 2050 2021 2030 2040 2050 2010 -4 2010 2040 2050 2020 2030 International Energy Agency 2022 International Energy Agency 2022 **Realistic projections**

... but miss to inform about realistic pathways (Trutnevyte 2016)

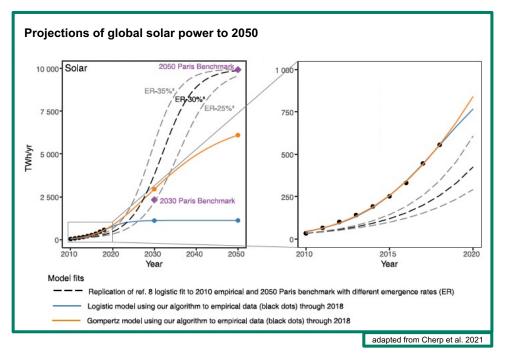
International Energy Agency (2022), World Energy Outlook 2022. Trutnevyte, E. (2016), Energy, 106, 182–193.

RENEWABLE ENERGY SYSTEMS

2

Need

Projections of energy technology diffusion


Cherp, A. et al. (2021), Nature Energy, 6(7), 742–754. Yue, X. et al. (2018), Energy Strategy Rev., 21, 204-217. Morgan, M.G. et al. (2008), Climatic Change, 90(3), 189–215. Lekvall, et al. (1973), The Swedish Journal of Economics, 75(4), 362. Young, P. (1993), Technological Forecasting and Social Change, 44(4), 375–389. Geroski, P.A. (2000), *Research Policy*, 29(4–5), 603–625.

Projections of energy technology diffusion

Yue, X. et al. (2018), Energy Strategy Rev., 21, 204-217. Morgan, M.G. et al. (2008), Climatic Change, 90(3), 189–215.

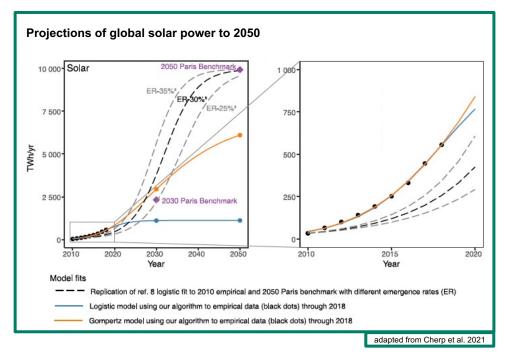
Trutnevyte, E. et al. (2022), Joule, 6, 1969-1970.

Common projections

.

Deterministic and do not account for uncertainties (Yue et al. 2018, Trutnevyte et al. 2022)

Lekvall, et al. (1973), The Swedish Journal of Economics, 75(4), 362. Young, P. (1993), Technological Forecasting and Social Change, 44(4), 375–389. Geroski, P.A. (2000), *Research Policy*, 29(4–5), 603–625.


RENEWABLE ENERGY SYSTEMS

Cherp, A. et al. (2021), Nature Energy, 6(7), 742-754.

Projections of energy technology diffusion

Yue, X. et al. (2018), Energy Strategy Rev., 21, 204-217. Morgan, M.G. et al. (2008), Climatic Change, 90(3), 189–215.

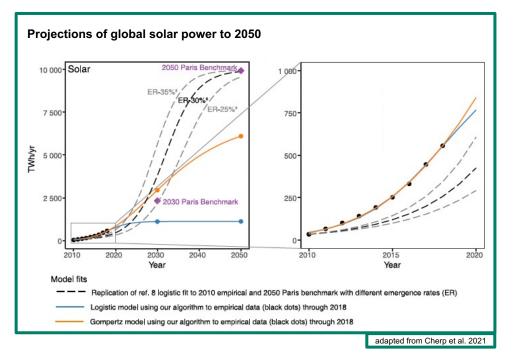
Trutnevyte, E. et al. (2022), Joule, 6, 1969-1970.

Common projections

.

- Deterministic and do not account for uncertainties (Yue et al. 2018, Trutnevyte et al. 2022)
- Overconfidence (Morgan et al. 2008)

Lekvall, et al. (1973), The Swedish Journal of Economics, 75(4), 362. Young, P. (1993), Technological Forecasting and Social Change, 44(4), 375–389. Geroski, P.A. (2000), *Research Policy*, 29(4–5), 603–625.


RENEWABLE ENERGY SYSTEMS

Cherp, A. et al. (2021), Nature Energy, 6(7), 742-754.

Projections of energy technology diffusion

Common projections

.

Deterministic and do not account for uncertainties (Yue et al. 2018, Trutnevyte et al. 2022)

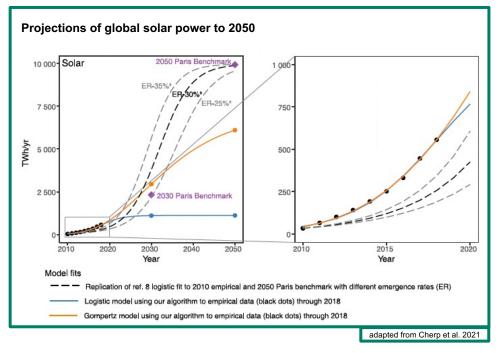
Overconfidence (Morgan et al. 2008)

Projections of different models

→ can vary significantly and are sensitive to parameter choice (Höök et al. 2011, Young et al. 1993,

Lekvall et al. 1973, Geroski et al. 2000)

 Cherp, A. et al. (2021), Nature Energy, 6(7), 742–754.
 Trutnevyte, E. et al. (2022), Joule, 6, 1969-1970.


 Yue, X. et al. (2018), Energy Strategy Rev., 21, 204-217.
 Morgan, M.G. et al. (2008), Climatic Change, 90(3), 189–215.

Lekvall, et al. (1973), The Swedish Journal of Economics, 75(4), 362. Young, P. (1993), Technological Forecasting and Social Change, 44(4), 375–389. Geroski, P.A. (2000), *Research Policy*, 29(4–5), 603–625.

Projections of energy technology diffusion

Trutnevyte, E. et al. (2022), Joule, 6, 1969-1970.

Morgan, M.G. et al. (2008), Climatic Change, 90(3), 189-215,

Common projections

.

Deterministic and do not account for uncertainties (Yue et al. 2018, Trutnevyte et al. 2022)

Overconfidence (Morgan et al. 2008)

Projections of different models

→ can vary significantly and are sensitive to parameter choice

(Young et al. 1993, Lekvall et al. 1973, Geroski et al. 2000)

Lekvall, et al. (1973), The Swedish Journal of Economics, 75(4), 362. Young, P. (1993), Technological Forecasting and Social Change, 44(4), 375–389. Geroski, P.A. (2000), *Research Policy*, 29(4–5), 603–625.

RENEWABLE ENERGY SYSTEMS

Cherp, A. et al. (2021), Nature Energy, 6(7), 742-754.

Yue, X. et al. (2018), Energy Strategy Rev., 21, 204-217.

Research goals and set-up

Research goals and set-up

Research goals

New method for projections of granular energy technology diffusion that accounts for

probabilities

a **diversity of models** with different characteristics

model evaluation and weighting

spatial features and resolutions

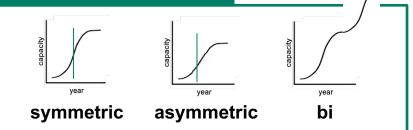
Research goals and set-up

Research goals

New method for projections of granular energy technology diffusion that accounts for

probabilities

a **diversity of models** with different characteristics



model evaluation and weighting

spatial features and resolutions

S-curve diffusion models

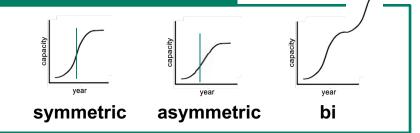
Research goals and set-up

Research goals

New method for projections of granular energy technology diffusion that accounts for

probabilities

a **diversity of models** with different characteristics



model evaluation and weighting

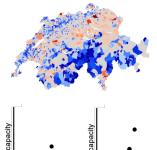
spatial features and resolutions

S-curve diffusion models

Case study

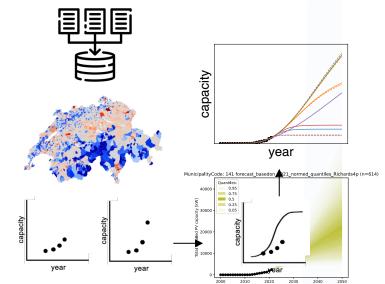
Solar photovoltaics (PV), heat pumps, and Battery Electric Vehicles (BEV) in 2'148 Swiss municipalities

4-step method to create probabilistic projections



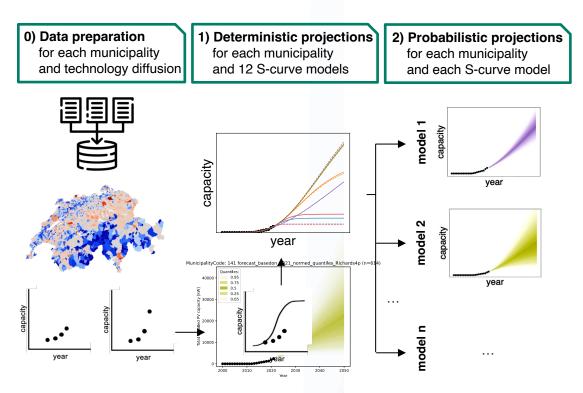
4-step method to create probabilistic projections

0) Data preparation for each municipality and technology diffusion

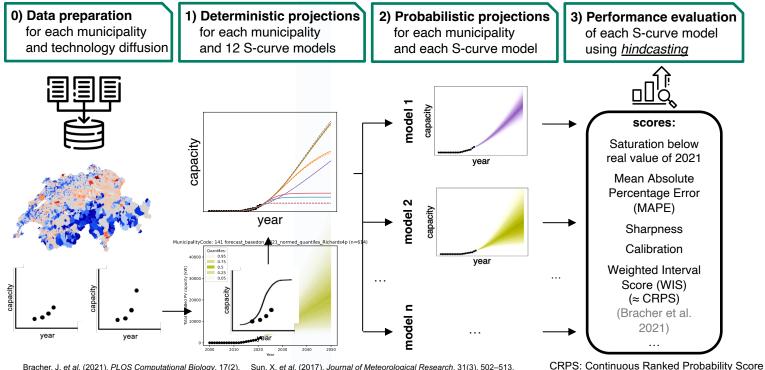

year year

4-step method to create probabilistic projections

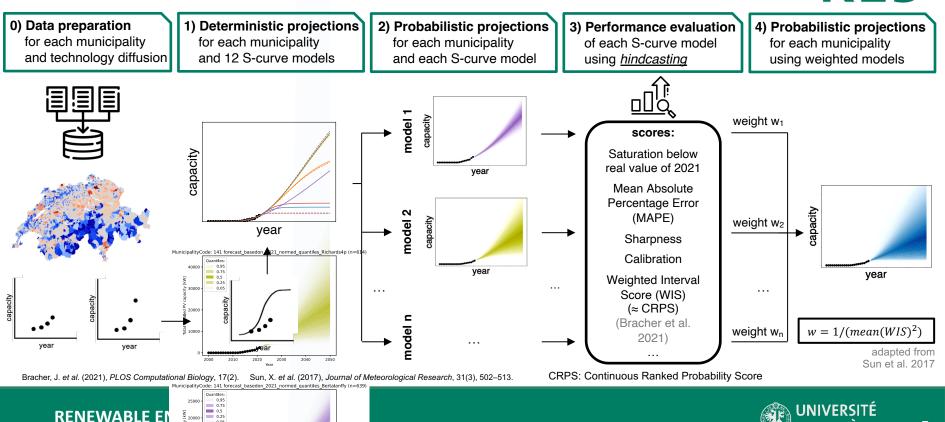
0) Data preparation 1) Deterministic projections for each municipality for each municipality and technology diffusion and 12 S-curve models



4-step method to create probabilistic projections


MunicipalityCode: 141 forecast_basedon_2021_normed_quantiles_Bertalanffy (n=639)

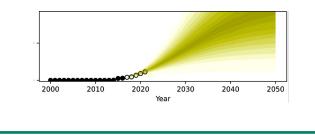
4-step method to create probabilistic projections


Bracher, J. et al. (2021), PLOS Computational Biology, 17(2). Sun, X. et al. (2017), Journal of Meteorological Research, 31(3), 502-513. MunicipalityCode: 141 forecast basedon 2021 normed quantiles Bertalanffy (n=639)

0.05

4-step method to create probabilistic projections

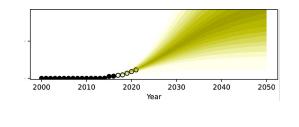
Methods Hindcasting



Methods Hindcasting

Retrospective model testing

- Evaluate the performance of models by comparing the calculated projections with real historical observations
- In each iteration: Split historical time series data in training set and out-of-sample test set



Methods Hindcasting

RES

Retrospective model testing

- Evaluate the performance of models by comparing the calculated projections with real historical observations
- In each iteration: Split historical time series data in training set and out-of-sample test set

MAPE: Mean Absolute Percentage Error

RENEWABLE ENERGY SYSTEMS

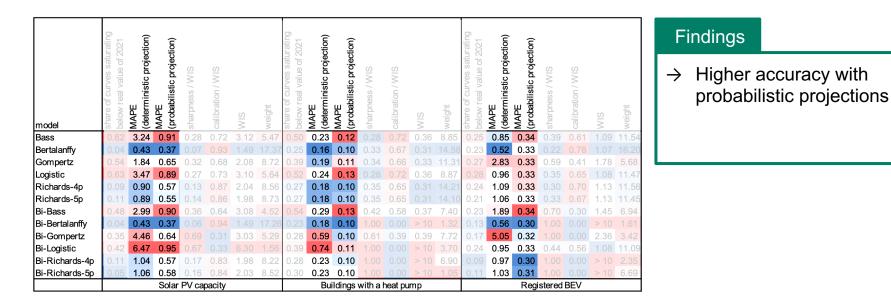
Results

Probabilistic vs. deterministic projection

RENEWABLE ENERGY SYSTEMS

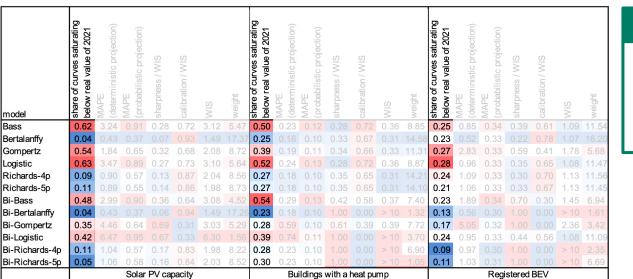
Probabilistic vs. deterministic projection

below real value of 2021 MAPE (deterministic projection) MAPE	(probabilistic projection) sharpness / WIS	calibration / WIS	SIM	weight	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	SIM	weight	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	SIM	weight
62 3.24 0	0.91 0.28	0.72	3.12	5.47	0.50	0.23	0.12		0.72	0.36	8.85	0.25	0.85	0.34	0.39	0.61	1.09	11.54
04 0.43 0	0.37 0.07			17.37	0.25	0.16	0.10		0.67		14.58	0.23	0.52	0.33	0.22			16.20
	0.65 0.32	0.68	2.08	8.72	0.39	0.19	0.11	0.34	0.66	0.33	11.31	0.27	2.83	0.33	0.59	0.41	1.78	5.68
	0.89 0.27	0.73	3.10	5.64	0.52	0.24	0.13		0.72	0.36	8.87	0.28	0.96	0.33			1.08	11.47
	0.57 0.13	0.87	2.04	8.56	0.27	0.18	0.10	0.35	0.65		14.21	0.24	1.09	0.33			1.13	11.56
	0.55 0.14		1.98	8.73	0.27	0.18	0.10		0.65		14.10	0.21	1.06	0.33		0.67	1.13	11.45
).90 0.36	0101	3.08	4.52	0.54	0.29	0.13	0.42	0.58	0.37	7.40	0.23	1.89	0.34	0.70		1.45	6.94
).37 0.06			17.26	0.23	0.18	0.10	1.00		> 10	1.32	0.13	0.56	0.30	1.00		> 10	1.61
	0.64 0.69		3.03	5.29	0.28	0.59	0.10	0.61	0.39	0.39	7.72	0.17	5.05	0.32	1.00		2.36	3.42
	0.95 0.67			1.56	0.39	0.74	0.11	1.00		> 10	3.70	0.24	0.95	0.33	0.44	0.56	1.08	11.09
	0.57 0.17	0.83	1.98	8.22	0.28	0.23	0.10	1.00		> 10	6.90		0.97	0.30	1.00		> 10	2.35
		0.84	2.03	8.52	0.30	0.23	0.10	1.00	0.00	> 10	1.05	0.11	1.03	0.31	1.00	0.00	> 10	6.69
	C	0.58 0.16		0.58 0.16 0.84 2.03	0.58 0.16 0.84 2.03 8.52	0.58 0.16 0.84 2.03 8.52 0.30	0.58 0.16 0.84 2.03 8.52 0.30 0.23	0.58 0.16 0.84 2.03 8.52 0.30 0.23 0.10	0.58 0.16 0.84 2.03 8.52 0.30 0.23 0.10 1.00	0.58 0.16 0.84 2.03 8.52 0.30 0.23 0.10 1.00 0.00	0.58 0.16 0.84 2.03 8.52 0.30 0.23 0.10 1.00 0.00 > 10	0.58 0.16 0.84 2.03 8.52 0.30 0.23 0.10 1.00 0.00 > 10 1.05	0.58 0.16 0.84 2.03 8.52 0.30 0.23 0.10 1.00 0.00 > 10 1.05 0.11	0.58 0.16 0.84 2.03 8.52 0.30 0.23 0.10 1.00 0.00 > 10 1.05 0.11 1.03	0.58 0.16 0.84 2.03 8.52 0.30 0.23 0.10 1.00 0.00 > 10 1.05 0.11 1.03 0.31	0.58 0.16 0.84 2.03 8.52 0.30 0.23 0.10 1.00 0.00 > 10 1.05 0.11 1.03 0.31 1.00	0.58 0.16 0.84 2.03 8.52 0.30 0.23 0.10 1.00 0.00 > 10 1.05 0.11 1.03 0.31 1.00 0.00	0.58 0.16 0.84 2.03 8.52 0.30 0.23 0.10 1.00 0.00 > 10 1.05 0.11 1.03 0.31 1.00 0.00 > 10



MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

Probabilistic vs. deterministic projection



MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

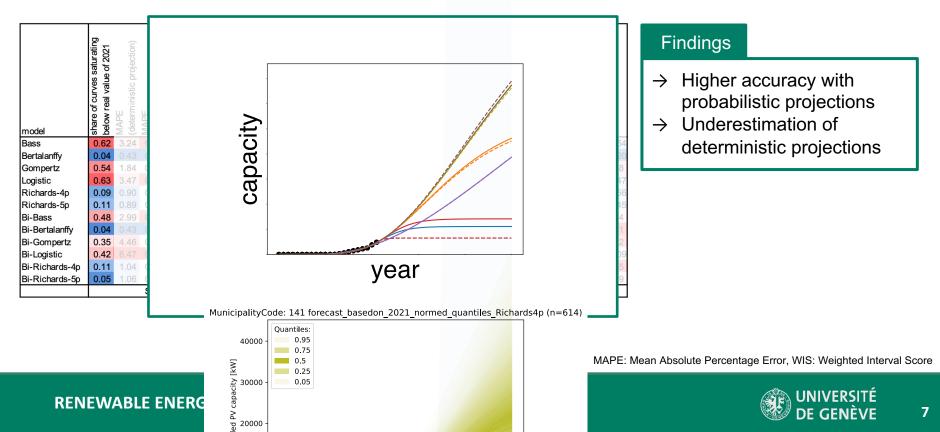
UNIVERSITÉ DE GENÈVE

7

Probabilistic vs. deterministic projection

- → Higher accuracy with probabilistic projections
- → Underestimation of deterministic projections

MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score



7

Results

Probabilistic vs. deterministic projection

Results

Comparison of S-curve models

Results Comparison of S-curve models

model	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	NIS		share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	SIM	weight	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	NIS	weight
Bass	0.62	3.24	0.91	0.28	0.72	3.12	5.47	0.50	0.23	0.12	0.28	0.72	0.36	8.85	0.25	0.85	0.34	0.39	0.61	1.09	11.54
Bertalanffy	0.04	0.43	0.37	0.07	0.93	1.49	17.37	0.25	0.16	0.10	0.33	0.67	0.31	14.58	0.23	0.52	0.33	0.22	0.78	1.07	16.20
Gompertz	0.54	1.84	0.65	0.32	0.68	2.08	8.72	0.39	0.19	0.11	0.34	0.66	0.33	11.31	0.27	2.83	0.33	0.59	0.41	1.78	5.68
Logistic	0.63	3.47	0.89	0.27	0.73	3.10	5.64	0.52	0.24	0.13	0.28	0.72	0.36	8.87	0.28	0.96	0.33	0.35	0.65	1.08	11.47
Richards-4p	0.09	0.90	0.57	0.13	0.87	2.04	8.56	0.27	0.18	0.10	0.35	0.65	0.31	14.21	0.24	1.09	0.33	0.30	0.70	1.13	11.56
Richards-5p	0.11	0.89	0.55	0.14	0.86	1.98	8.73	0.27	0.18	0.10	0.35	0.65	0.31	14.10	0.21	1.06	0.33	0.33	0.67	1.13	11.45
Bi-Bass	0.48	2.99	0.90	0.36	0.64	3.08	4.52	0.54	0.29	0.13	0.42	0.58	0.37	7.40	0.23	1.89	0.34	0.70	0.30	1.45	6.94
Bi-Bertalanffy	0.04	0.43	0.37	0.06	0.94	1.49	17.26	0.23	0.18	0.10	1.00	0.00	> 10	1.32	0.13	0.56	0.30	1.00	0.00	> 10	1.61
Bi-Gompertz	0.35	4.46	0.64	0.69	0.31	3.03	5.29	0.28	0.59	0.10	0.61	0.39	0.39	7.72	0.17	5.05	0.32	1.00	0.00	2.36	3.42
Bi-Logistic	0.42	6.47	0.95	0.67	0.33	6.30	1.56	0.39	0.74	0.11	1.00	0.00	> 10	3.70	0.24	0.95	0.33	0.44	0.56	1.08	11.09
Bi-Richards-4p	0.11	1.04	0.57	0.17	0.83	1.98	8.22	0.28	0.23	0.10	1.00	0.00	> 10	6.90	0.09	0.97	0.30	1.00	0.00	> 10	2.35
Bi-Richards-5p	0.05	1.06	0.58	0.16	0.84	2.03	8.52	0.30	0.23	0.10	1.00	0.00	> 10	1.05	0.11	1.03	0.31	1.00	0.00	> 10	6.69
	Solar PV capacity							Buildings with a heat pump							Registered BEV						

Sun, X. et al. (2017), Journal of Meteorological Research, 31(3), 502–513.

MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

RENEWABLE ENERGY SYSTEMS

Comparison of S-curve models

nodel	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	NIS		share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	NIS	weight	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	SIM	weight		
Bass	0.62	3.24	0.91	0.28	0.72	3.12	5.47	0.50	0.23	0.12			0.36	8.85	0.25	0.85	0.34	0.39	0.61	1.09	11.54		
Bertalanffy	0.04	0.43	0.37	0.07	0.93	1.49	17.37	0.25	0.16	0.10	0.33	0.67	0.31	14.58	0.23	0.52	0.33	0.22	0.78	1.07	16.20		
Gompertz	0.54	1.84	0.65	0.32	0.68	2.08	8.72	0.39	0.19	0.11	0.34	0.66	0.33	11.31	0.27	2.83	0.33	0.59	0.41	1.78	5.68		
_ogistic	0.63	3.47		0.27	0.73	3.10	5.64	0.52	0.24	0.13			0.36	8.87	0.28	0.96	0.33	0.35	0.65	1.08	11.47		
Richards-4p	0.09	0.90	0.57	0.13	0.87	2.04	8.56	0.27	0.18	0.10	0.35	0.65	0.31	14.21	0.24	1.09	0.33	0.30	0.70	1.13	11.56		
Richards-5p	0.11	0.89	0.55	0.14	0.86	1.98	8.73	0.27	0.18	0.10	0.35	0.65	0.31	14.10	0.21	1.06	0.33	0.33	0.67	1.13	11.45		
Bi-Bass	0.48	2.99		0.36	0.64	3.08	4.52		0.29		0.42	0.58	0.37	7.40	0.23	1.89		0.70		1.45	6.94		
Bi-Bertalanffy	0.04								0.18		1.00		> 10	1.32	0.13			1.00		> 10	1.61		
Bi-Gompertz	0.35	4.46	0.64			3.03	5.29	0.28		0.10	0.61	0.39	0.39	7.72	0.17		0.32	1.00		2.36	3.42		
Bi-Logistic	0.42							0.39		0.11	1.00		> 10	3.70	0.24	0.95	0.33	0.44	0.56	1.08	11.09		
Bi-Richards-4p	0.11	1.04	0.57	0.17	0.83	1.98	8.22	0.28	0.23	0.10	1.00		> 10	6.90		0.97		1.00		> 10	2.35		
Bi-Richards-5p	0.05	1.06	0.58	0.16	0.84	2.03	8.52	0.30	0.23	0.10	1.00	0.00	> 10	1.05	0.11	1.03	0.31	1.00	0.00	> 10	6.69		
			Solar	PV ca	oacity			Buildings with a heat pump								Registered BEV							

Findings

→ Higher accuracy and precision for Bertalanffy and Richards

Sun, X. et al. (2017), Journal of Meteorological Research, 31(3), 502-513.

Results

MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

Results Comparison of S-curve models

model	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	NIS	weight	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	NIS	weight	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	WIS	weight		F →
Bass	0.62	3.24	0.91	0.28	0.72	3.12	5.47	0.50	0.23				0.36	8.85	0.25	0.85	0.34	0.39	0.61	1.09	11.54		\rightarrow
Bertalanffy	0.04	0.43	0.37	0.07	0.93	1.49	17.37	0.25	0.16	0.10	0.33	0.67	0.31	14.58	0.23	0.52	0.33	0.22	0.78	1.07	16.20		
Gompertz	0.54	1.84	0.65	0.32	0.68	2.08	8.72	0.39	0.19	0.11	0.34	0.66	0.33	11.31	0.27	2.83	0.33	0.59	0.41	1.78	5.68		
Logistic	0.63	3.47		0.27	0.73	3.10	5.64	0.52	0.24	0.13			0.36	8.87	0.28	0.96	0.33	0.35	0.65	1.08	11.47		
Richards-4p	0.09	0.90	0.57	0.13	0.87	2.04	8.56	0.27	0.18	0.10	0.35	0.65	0.31	14.21	0.24	1.09	0.33	0.30	0.70	1.13	11.56		
Richards-5p	0.11	0.89	0.55	0.14	0.86	1.98	8.73	0.27	0.18	0.10	0.35	0.65	0.31	14.10	0.21	1.06	0.33	0.33	0.67	1.13	11.45		
Bi-Bass	0.48	2.99		0.36	0.64	3.08	4.52	0.54	0.29		0.42	0.58	0.37	7.40	0.23	1.89		0.70		1.45	6.94	1	
Bi-Bertalanffy	0.04					1.49	17.26	0.23	0.18		1.00		> 10	1.32	0.13			1.00		> 10	1.61		W
Bi-Gompertz	0.35	4.46	0.64			3.03	5.29	0.28		0.10	0.61	0.39	0.39	7.72	0.17		0.32	1.00		2.36	3.42		~ ~ ~
Bi-Logistic	0.42					6.30	1.56	0.39		0.11	1.00		> 10	3.70	0.24	0.95	0.33	0.44	0.56	1.08	11.09		
Bi-Richards-4p	0.11	1.04	0.57	0.17	0.83	1.98	8.22	0.28	0.23	0.10	1.00		> 10	6.90	0.09	0.97		1.00		> 10	2.35		
Bi-Richards-5p	0.05	1.06	0.58	0.16	0.84	2.03	8.52	0.30	0.23	0.10	1.00	0.00	> 10	1.05	0.11	1.03	0.31	1.00	0.00	> 10	6.69		
			Solar	PV ca	pacity				Bui	Idings	with a	heat pu	mp				Reg	istered	BEV				

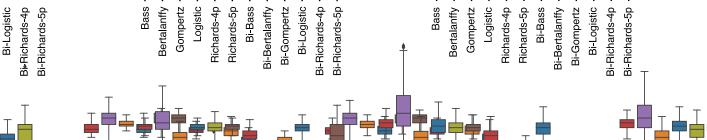
Findings

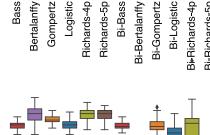
- → Higher accuracy and precision for Bertalanffy and Richards
- → Higher weights for Bertalanffy and Richards

Weight:

 $w = 1/(mean(WIS)^2)$

adapted from Sun et al. 2017


Sun, X. et al. (2017), Journal of Meteorological Research, 31(3), 502-513.


MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

8

Results Comparison of S-curve models ₩ 80 80 80 Solar PV capacity Buildings with a heat pump Registered BEV 70 70 70 60 \$60 **4**60 50 50 150 Weight Weight Weight 40 40 40 30 20 10 0

Bi-Bass

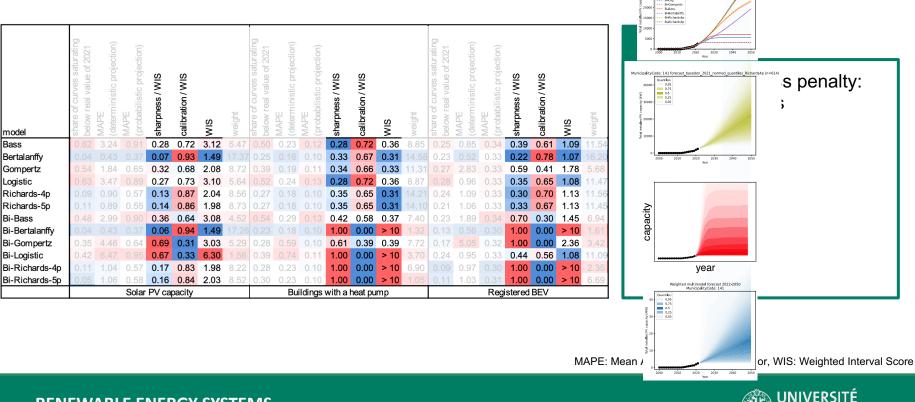
Logistic

Gompertz

Bertalanffy

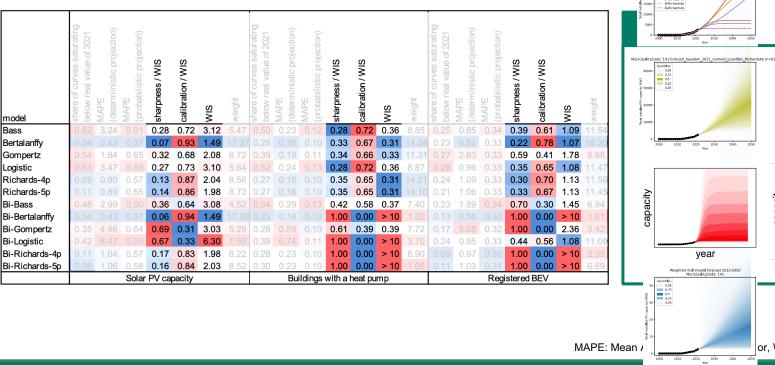
Bass

Results Comparison of S-curve models


model	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	MIS	weight	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	WIS	weight	share of curves saturating below real value of 2021	MAPE (deterministic projection)	MAPE (probabilistic projection)	sharpness / WIS	calibration / WIS	NIS	weight	
Bass	0.62	3.24		0.28	0.72	3.12	5.47		0.23		0.28	0.72	0.36	8.85	0.25	0.85	0.34	0.39	0.61	1.09	11.54	
Bertalanffy	0.04			0.07	0.93	1.49		0.25		0.10	0.33	0.67	0.31		0.23		0.33	0.22	0.78	1.07	16.20	
Gompertz	0.54	1.84	0.65	0.32	0.68	2.08	8.72	0.39	0.19	0.11	0.34	0.66	0.33	11.31	0.27	2.83	0.33	0.59	0.41	1.78	5.68	
Logistic	0.63	3.47		0.27	0.73	3.10	5.64	0.52	0.24		0.28	0.72	0.36	8.87	0.28	0.96	0.33	0.35	0.65	1.08	11.47	
Richards-4p	0.09		0.57	0.13	0.87	2.04	8.56	0.27	0.18	0.10	0.35	0.65	0.31		0.24	1.09	0.33	0.30	0.70	1.13	11.56	
Richards-5p	0.11	0.89	0.55	0.14	0.86	1.98	8.73	0.27	0.18	0.10	0.35	0.65	0.31	14.10	0.21	1.06	0.33	0.33	0.67	1.13	11.45	
Bi-Bass	0.48	2.99		0.36	0.64	3.08	4.52		0.29		0.42	0.58	0.37	7.40	0.23	1.89		0.70	0.30	1.45	6.94	
Bi-Bertalanffy	0.04			0.06	0.94	1.49		0.23	0.18		1.00	0.00	> 10	1.32	0.13			1.00	0.00	> 10	1.61	
Bi-Gompertz	0.35	4.46	0.64	0.69	0.31	3.03	5.29	0.28		0.10	0.61	0.39	0.39	7.72	0.17		0.32	1.00	0.00	2.36	3.42	
Bi-Logistic	0.42			0.67	0.33	6.30		0.39	0.74	0.11	1.00	0.00	> 10	3.70	0.24	0.95	0.33	0.44	0.56	1.08	11.09	
Bi-Richards-4p	0.11	1.04	0.57	0.17	0.83	1.98	8.22	0.28	0.23	0.10	1.00	0.00	> 10	6.90		0.97		1.00	0.00	> 10	2.35	
Bi-Richards-5p	0.05	1.06	0.58	0.16	0.84	2.03	8.52	0.30	0.23	0.10	1.00	0.00	> 10	1.05	0.11	1.03	0.31	1.00	0.00	> 10	6.69	
	Solar PV capacity								Buildings with a heat pump							Registered BEV						

MAPE: Mean Absolute Percentage Error, WIS: Weighted Interval Score

Results **Comparison of S-curve models**

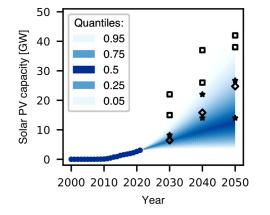

RENEWABLE ENERGY SYSTEMS

MunicipalityCode: 141

Bass Bertalanffy Richards4p BHop

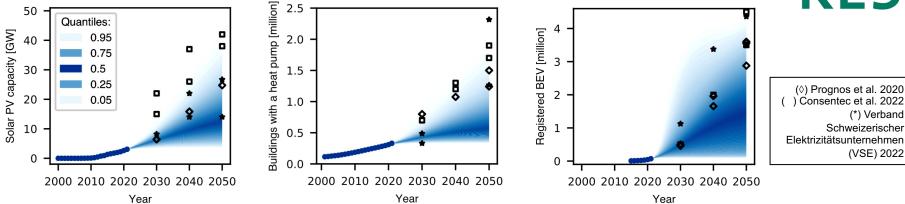
Results Comparison of S-curve models

Results Technology diffusion in Switzerland



Results

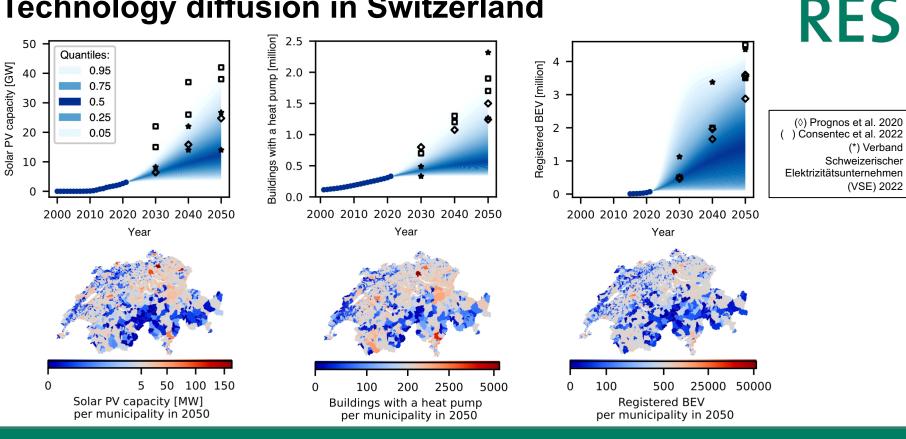
Technology diffusion in Switzerland


(◊) Prognos et al. 2020
 () Consentec et al. 2022

 (*) Verband
 Schweizerischer
 Elektrizitätsunternehmen
 (VSE) 2022

Results

Technology diffusion in Switzerland



Results

Technology diffusion in Switzerland

Key findings

Results

RENEWABLE ENERGY SYSTEMS

RENEWABLE ENERGY SYSTEMS

Results

Conclusion

Key findings

• Probabilistic projections of S-curves outperform deterministic projections

- \rightarrow Anticipation of future technology diffusion with higher accuracy
- \rightarrow Compensation for underestimation and low saturation

Results **Conclusion**

Key findings

- Probabilistic projections of S-curves outperform deterministic projections
 - \rightarrow Anticipation of future technology diffusion with higher accuracy
 - \rightarrow Compensation for underestimation and low saturation

• Weighting compensates tradeoffs of particular S-curve models, e.g.:

- → Exceptionally broad/sharp density intervals
- \rightarrow Underestimation and low saturation

Results **Conclusion**

Key findings

- Probabilistic projections of S-curves outperform deterministic projections
 - \rightarrow Anticipation of future technology diffusion with higher accuracy
 - \rightarrow Compensation for underestimation and low saturation

• Weighting compensates tradeoffs of particular S-curve models, e.g.:

- → Exceptionally broad/sharp density intervals
- \rightarrow Underestimation and low saturation

• Bertalanffy and Richards models are on average the best performing models

 \rightarrow Lowest MAPE, WIS, but performance is specific to each municipality

RENEWABLE ENERGY SYSTEMS

Conclusion

Key findings

Results

- Probabilistic projections of S-curves outperform deterministic projections
 - \rightarrow Anticipation of future technology diffusion with higher accuracy
 - \rightarrow Compensation for underestimation and low saturation

• Weighting compensates tradeoffs of particular S-curve models, e.g.:

- → Exceptionally broad/sharp density intervals
- \rightarrow Underestimation and low saturation
- Bertalanffy and Richards models are on average the best performing models
 - \rightarrow Lowest MAPE, WIS, but performance is specific to each municipality
- Based on current dynamics, Switzerland is unlikely to reach net zero targets by 2050

RENEWABLE ENERGY SYSTEMS

12

Results

Conclusion

RES

Key findings

- Probabilistic projections of S-curves outperform deterministic projections
 - \rightarrow Anticipation of future technology diffusion with higher accuracy
 - \rightarrow Compensation for underestimation and low saturation

• Weighting compensates tradeoffs of particular S-curve models, e.g.:

- → Exceptionally broad/sharp density intervals
- \rightarrow Underestimation and low saturation
- Bertalanffy and Richards models are on average the best performing models
 - \rightarrow Lowest MAPE, WIS, but performance is specific to each municipality
- Based on current dynamics, Switzerland is unlikely to reach net zero targets by 2050
- Highest capacities of solar PV, heat pumps, and BEV are most likely near population centers

Key implications on methods

For modelers	For decision-makers

Key implications on methods

For decision-makers

- Information on future trends and their probabilities to overcome...
 - \rightarrow Overconfidence
 - → Broad uncertainties without likelihood

For modelers

Key implications on methods

For decision-makers

- Information on future trends and their probabilities to overcome...
 - \rightarrow Overconfidence
 - \rightarrow Broad uncertainties without likelihood
- Projections reflect uncertainties
 based on current diffusion dynamics

For modelers

Key implications on methods

For decision-makers

- Information on future trends and their probabilities to overcome...
 - \rightarrow Overconfidence
 - \rightarrow Broad uncertainties without likelihood
- Projections reflect uncertainties based on current diffusion dynamics
 - → How future policies and context events might accelerate/slow diffusion remains unknown

For modelers

Key implications on methods

For decision-makers

- Information on future trends and their probabilities to overcome...
 - \rightarrow Overconfidence
 - → Broad uncertainties without likelihood
- Projections reflect uncertainties based on current diffusion dynamics
 - → How future policies and context events might accelerate/slow diffusion remains unknown
 - → Combining probabilistic projections with scenarios might help to illustrate diffusion better

For modelers

Key implications on methods

For decision-makers

- Information on future trends and their probabilities to overcome...
 - \rightarrow Overconfidence
 - \rightarrow Broad uncertainties without likelihood
- Projections reflect uncertainties based on current diffusion dynamics
 - → How future policies and context events might accelerate/slow diffusion remains unknown
 - → Combining probabilistic projections with scenarios might help to illustrate diffusion better

For modelers

 Information on future trends and their probabilities to inform likelihood and uncertainty of scenarios from energy model optimization

Few input data/assumptions

→ Specifically applicable to cases where availability of different data is limited

Key implications on methods

For decision-makers

- Information on future trends and their probabilities to overcome...
 - \rightarrow Overconfidence

RENEWABLE ENERGY SYSTEMS

- \rightarrow Broad uncertainties without likelihood
- Projections reflect uncertainties
 based on current diffusion dynamics
 - → How future policies and context events might accelerate/slow diffusion remains unknown
 - → Combining probabilistic projections with scenarios might help to illustrate diffusion better

For modelers

- Information on future trends and their probabilities to inform likelihood and uncertainty of scenarios from energy model optimization
- Few input data/assumptions
 - → Specifically applicable to cases where availability of different data is limited
- Context information implicitly included
 - → Explicit use of factors might improve projections

Key implications on methods

For decision-makers

- Information on future trends and their probabilities to overcome...
 - \rightarrow Overconfidence
 - \rightarrow Broad uncertainties without likelihood
- Projections reflect uncertainties
 based on current diffusion dynamics
 - → How future policies and context events might accelerate/slow diffusion remains unknown
 - → Combining probabilistic projections with scenarios might help to illustrate diffusion better

For modelers

- Information on future trends and their probabilities to inform likelihood and uncertainty of scenarios from energy model optimization
- Few input data/assumptions
 - → Specifically applicable to cases where availability of different data is limited
- Context information implicitly included
 - → Explicit use of factors might improve projections
- Choice of models, criteria, and weighting

Thank you!

Nik Zielonka, Xin Wen, Evelina Trutnevyte

Renewable Energy Systems Institute for Environmental Sciences University of Geneva

Nik.Zielonka@unige.ch www.unige.ch/res

Swiss National
 Science Foundation
 Grant no. 186834 (ACCURACY)

RENEWABLE ENERGY SYSTEMS

