Charging for electricity distribution networks in scenarios of increased residential end-user electrification

Graham Turk Jointly with Tim Schittekatte and Pablo Dueñas Martínez

🖞 🖸 in 🎔 @mitenergy

Presentation outline

- Motivation
- Methodology
- Results
- Conclusions & next steps

What do residential consumers pay in the US?

75-100%

Smart Meter Deployment in the US (2022)

Source: Institute for Electric Innovation (2022)

Many utilities offer opt-in volumetric time-of-use (TOU) rates

The Brattle Group estimated in 2019 that only **1.7%** of all residential customers were on TOU

Default TOU Rates in the US (2023)

Motivation

What are the leading US states doing?

WEEKENDS AND MOST HOLIDAYS

Source: Pacific Gas & Electric

Emerging preference for simple volumetric TOU, often with network and energy bundled into one charge (in states with no retail choice)

	Oahu
Off-Peak (10 p.m. to 9 a.m.)	37.8
Mid-Day (9 a.m. to 5 p.m.)	28.0
On-Peak (5 p.m. to 10 p.m.)	45.1

Source: Hawaiian Electric

Summer: June 1 – September 30 Winter: October 1 – May 30

Weekends and holidays billed at the off-peak rate.

Source: Xcel Energy

Motivation

n Motivation

What programs exist specifically for EV charging?

Utility	State	Details
Xcel Energy	Minnesota	Unlimited charging between 9pm and 9am for \$42.50/month
MMWEC	Massachusetts	\$6/month credit to limit charging to 1.25 kW between 5-9pm on weekdays
PSEG	New Jersey	\$0.105/kWh credit for off-peak charging (between 9pm – 7am M-F)
Sonoma Clean Power	California	\$250 rebate + \$5/month to allow curtailment up to 120 hours/year

Programs lead to "snapback" demand from programmable devices responding to price

What can we learn from our friends across the pond?

24h

				C
Measured or subscribed	Subscribed	Subscribed	Measured	ra e
Time differentiation	No	Two periods with different prices	No	an
Absolute magnitude	About 20 euro/kW per year	About 25 euro/kW per year (total)	About 40 euro/kW per year	
	Source: N	Subscribed capacity kW Subscription «Overs	spending»	umer daily m

oule

ommentary eforming retail electricity ates to facilitate conomy-wide decarbonization

Schittekatte,^{1,4,*} Dharik Mallapragada,¹ Paul L. Joskow,² Richard Schmalensee^{2,3}

Fuse size

kW

24h

Fuse size

Motivation

Our scope

Objective of the network tariff:

 Efficiency (cost-reflectiveness) ≈ not distorting the short-term marginal cost of electricity to end-users while limiting overinvestment in networks

Real-world constraints:

- Redistributional impacts between end users
- Simplicity and predictability
- Non-discriminatory
- Cost recovery of distribution network investment
- We assume a world with (simple) price coordination only
 - Alternative: control by utility over electric appliances or more advanced schemes
- Special focus on the interaction between time-varying energy prices and the network tariff design (consumers react on the aggregate!)

High-level overview methodology (1/7)

• We model 400 households with unique hourly load profiles for one year

High-level overview methodology (2/7)

- We model 400 households with unique hourly load profiles for one year
- We assume the energy prices to be exogeneous and reflected via a simple two-period TOU tariff (peak: 8am-9pm weekdays, the remainder off-peak), no other distortions

High-level overview methodology (3/7)

- We model 400 households with unique hourly load profiles for one year
- We assume the energy prices to be exogeneous and reflected via a simple two-period TOU tariff (peak: 8am-9pm weekdays, the remainder off-peak), no other distortions

- We vary the rate of electrification over the households; each EV has a unique driving schedule:
 - EV load responds rationally to price signals when plugged-in (perfect foresight) MILP

Methodology

High-level overview methodology (4/7)

- We model 400 households with unique hourly load profiles for one year
- We assume the energy prices to be exogeneous and reflected via a simple two-period TOU tariff (peak: 8am-9pm weekdays, the remainder offpeak), no other distortions
- We vary the rate of electrification over the households; each EV has a unique driving schedule:
 - EV load responds rationally to price signals when plugged-in (perfect foresight) MILP
- We test four standard formats network tariff designs: fixed, volumetric, capacity with and without time differentiation, and subscription

Magnitudes under 0% of EV adoption

Tariff Type	Cost
Fixed charge	\$1000 per year
Flat volumetric (baseline)	\$0.11/kWh all hours
TOU volumetric 2- period	\$0.07/kWh off-peak \$0.18/kWh peak
Flat capacity	\$158/kW-year
TOU capacity 3-period	\$30/kW-year off-peak \$70 /kW-year mid-peak \$87/kW-year on-peak

Methodology

High-level overview methodology (5/7)

• We assume those 400 households are connected to one feeder and increases in the annual aggregated coincident peak demand lead to linearly increasing network costs

High-level overview methodology (6/7)

- We assume those 400 households are connected to one feeder and increases in the annual aggregated coincident peak demand lead to linearly increasing network costs
- The revenue requirement equals the base case network costs (no electrification) plus a constant (≈ LRMC) multiplied by the delta in coincident peak demand relative to the base case (iteration until equilibrium = cost recovery)

High-level overview methodology (7/7)

- We assume those 400 households are connected to one feeder and increases in the annual aggregated coincident peak demand lead to linearly increasing network costs
- The revenue requirement equals the base case network costs (no electrification) plus a constant (≈ LRMC) multiplied by the delta in coincident peak demand relative to the base case (iteration until equilibrium = cost recovery)

Methodology

14

We asses the results based on three metrics: annual aggregated coincident peak, levelized cost
of charging, and change in the network costs for non-EV households

What is the aggregated peak under each tariff at different electrification levels?

What is the aggregated peak under each tariff at different electrification levels?

Results

What is driving the peak up?

EVs react to start of off-peak energy in both cases, but under a capacity charge they limit charging to avoid increasing individual peak demand

Can we do better with time/seasonal differentiation?

Results

18

Demand of average house on peak day in each month at 0% adoption

How can we improve by considering daily & seasonal variation?

How does a subscription tariff perform?

The paradox: the status quo (leveraging heterogeneity)

Results

But status quo is an unstable equilibrium

22

Results

What are the distributional impacts on non-EV households under each tariff?

23

The good (antifragile) news: some consumers ignoring the rate design makes its performance better!

The bad news: if EV owners adopt dynamic energy prices the whole story becomes (even) more complicated

What are the key findings? (1/2)

- Uncontrolled EV charging becomes very quickly an issue (newly created peaks from 15% of adoption levels and adoption will be concentrated!)
- Purely volumetric network charges (with or without time-differentiation) are not a good idea:
 - No signal to limit aggregated peaks & makes electrification expensive
- **Fixed network charges** also do not seem a good idea as they send no signal to limit aggregated peaks. They do foster electrification but can lead to distributional impacts when not differentiated.
- Capacity-based tariffs perform well but might not be easy to implement. A three part-subscription based tariff seems like a pragmatic solution. The exact design needs tailoring to be effective.
 - Increase in aggregated peak limited & even better if some consumer ignore price signals
 - Fosters electrification & no exaggerated distributional effects

What are the key findings? (2/2)

- The inclusion of heat pumps reduces the effectiveness of subscription-based tariffs; opportunities for preheating/pre-cooling to limit temperature-driven peaks
- The whole analysis become more complex when **dynamic energy prices** are adopted
 - Solutions: <u>need for load control</u>, discriminate rates to create randomness, daily capacity charges, auctions for network capacity, price setting based on equilibria estimations, etc.

Thank you

energy.mit.edu **f** 💿 **in** 🍠 @mitenergy

Appendix Slides

"[E]lectrification of end uses, particularly space heating through the use of electric heat pumps, was found to be the most economically advantageous and cost-effective decarbonization strategy for widespread deployment across the Commonwealth's building sector, especially for residences and homes, which account for about 60% of all buildings sector emissions"

Massachusetts 2050 Decarbonization Roadmap

30

3-part seasonal subscription tariff w/ TOU energy

Results

32

3-part seasonal subscription tariff w/ TOU energy

3-part seasonal subscription tariff w/ TOU energy

3-part seasonal subscription tariff w/ TOU energy

34

Which standard tariff designs do we test and how are they structured?

Magnitudes under 0% of EV adoption

Tariff Type	Cost
Fixed charge	\$1000 per year
Flat volumetric (baseline)	\$0.11/kWh all hours ^a
TOU volumetric 2-period	\$0.07/kWh off-peak ^b \$0.18/kWh peak ^b
Flat capacity	\$158/kW-year
TOU capacity 3-period	\$30/kW-year off-peak ^c \$70 /kW-year mid-peak ^c \$87/kW-year on-peak ^c

All tariffs tested with 2-part volumetric energy prices

^a Eversource network charge as of March 2023

^b Peak hours are M-F 8am-9pm, on-peak set at 2x peak based on National Grid rate G3 ^c Peak hours are M-F 8am-9pm, mid-peak hours are M-F 9pm-12am, off-peak all other hours

Motivation

Where have we seen this problem before?

New England regional peak shifted from hour ending 15 to hour ending 19 in just 4 years due to solar

36

Network costs on the rise & continue to do so

Motivation

Redesigning network tariffs: what (polar) alternatives?

VS.

●CBS LOS ANGELES	NEWS ~	WEATHER ~	SPORTS Y	VIDEO	MORE ~	🦾 61°	Q
State utility bi rate based on	ills m incor	ay see a ne	a chan	ge wi	th a fi	xed-	

KCAL BY KCAL-NEWS STAFF APRIL 15, 2023 / 9:03 AM / KCAL NEWS

f 🎔 🖬

Details of the proposal are as follows:

- Households earning less than \$28,000 a year would pay a fixed charge of \$15 a month on their electric bills in Edison and PG&E territories and \$24 a month in SDG&E territory.
- Those with incomes above \$180,000 would pay \$85 a month in Edison territory, \$128 a month in SDG&E territory and \$92 a month in PG&E territory.

. . .

Distribution network

Customers' aggregated loa duration curv

"n" critical hours

ILITY OF

prices (S/MWh

What can we learn from our friends across the pond?

				Cor
Measured or subscribed	Subscribed Subscribed		Measured	Re rat ec
Time differentiation	No	Two periods with different prices	No	and
Absolute magnitude	About 20 euro/kW per year	About 25 euro/kW per year (total)	About 40 euro/kW per year	
	Source: N	Subscribed capacity VE (2020)	spending»	ımer daily max

Motivation

Joule

Commentary

Reforming retail electricity rates to facilitate economy-wide decarbonization

Fuse size

kW

`

24h

Fuse size

Fim Schittekatte,^{1,4,*} Dharik Mallapragada,¹ Paul L. Joskow,² and Richard Schmalensee^{2,3}

Can we get more realistic? A 3-part subscription

- 1. We run the optimization as for the 3-part capacity charge
- 2. We determine per consumer the peak usage in each of the 3 time-windows
- 3. Subscription value= peak usage + 1kW "buffer"
- 4. Run the optimization for each consumer again but now with a <u>hard physical</u> <u>cap</u> equal to the subscription value per time period
- Idea is that this is the "exercise" a consumer would do to determine its subscription
- Sensitive to the "buffer" value
- Easier for consumers to understand than ex-post capacity charge

Are non-electrified households impacted uniformly?

Subscription 3-part seasonal tariff at 50% electrification

What is the cost of not ignoring rates? Directly Full charging when plugged in

MIT

42

Methodology

How do we model EV response to price signals?

- Mixed integer linear program to minimize each user's cost of EV charging
- Tuning parameter: level of EV adoption
 - 0 100% with 5% steps

EV charging load assumed to be flexible (perfectly price-responsive)

What are the assumptions & constraints of the optimization?

 Assign battery capacity based on driving profile: {40, 60, 90, 120} kWh (typical EV battery sizes)

If drive short distances, more likely to buy a smaller (& cheaper) EV

- Heterogeneous inelastic home profiles, unique & uncorrelated driving profiles
- No public/workplace charging & perfect foresight
- TOU energy price
 - peak: 8am-9pm weekdays, the remainder off-peak (ratio 2:1)
- EV charging constraints
 - Max 7.2 kW (30 A, 240V)
 - Nudge to leave the house each day with 100% battery charged
 - Battery state of charge cannot go below 10%

Methodology

Which standard tariff designs do we test and how are they structured?

Magnitudes under 0% of EV adoption

Tariff Type	Cost	p
Fixed charge	\$ 1000 per year	
Flat volumetric (baseline)	\$0.11/kWh all hours ^a	In
TOU volumetric 2-period	\$0.07/kWh off-peak ^b \$0.18/kWh peak ^b	
Flat capacity	\$158/kW-year	
TOU capacity 2-period	\$57/kW-year off-peak ^b \$111/kW-year peak ^b	r

As we add EVs, revenue requirement increases proportional to annual coincident peak over the 400 households

Incremental peak cost	+\$100/kW

Equilibrium reached when response does not deviate & full revenue requirement is collected

^a Eversource network charge as of March 2023 ^b Peak hours are M-F 8am-9pm, on-peak set at 2x peak based on National Grid rate G3

Can we do better? The three-part capacity tariff

Can we do better with time/seasonal differentiation?

MIT

47

What is the incremental network investment in each step?

What we are thinking of investigating next?

- Addition of elastic heat pump load; don't want technology-specific rates; rates should work for both HP and EV
- Look at how load control complements network charge design
- Introduction of (differentiated) fixed charge to mitigate distributional impacts and carry part of the distribution costs (capacity charges are now very high and not related to LRMC)
- Look deeper into seasonal capacity charges (rather than annual) & creation of "noise/bandwidth" to relax the perfect foresight condition
- Test robustness against different TOU energy pricing regimes
- Look deeper into results with dynamic pricing (wholesale prices won't be exogeneous anymore)

Two big pieces of the retail rate puzzle

1. Retail customers do not see the often-substantial hour-to-hour variation in the marginal cost of electricity supply, reflected in spot wholesale prices

2. Investment-related costs are embedded into volumetric rates while in the short-run these costs are fixed and do not vary with instantaneous consumption

IEA 2050 Net Zero Emissions scenario (IEA, 2022)

High-level overview methodology

High-level overview methodology

- We model 400 households with unique hourly load profiles during one year
- We vary the rate of electrification over the households; each EV has a unique driving/plug-in schedule:
 - EV load responds rationally to price signals when plugged-in (perfect foresight) MILP
- We assume the energy prices to be exogeneous and reflected via a simple two-period TOU tariff (peak: 8am-9pm weekdays, the remainder off-peak), no other distortions
- We test **four standard formats network tariff designs**: fixed, volumetric, capacity with and without time differentiation, and subscription
- We assume those 400 households are connected to one feeder and increases in the annual aggregated coincident peak demand lead to linearly increasing network costs
- The revenue requirement equals the base case network costs (no electrification) plus a constant (≈ LRMC) multiplied by the delta in coincident peak demand relative to the base case (iteration until equilibrium = cost recovery)
- We asses the results based on **three metrics**: annual aggregated coincident peak, levelized cost of charging, and change in the network costs for non-EV households