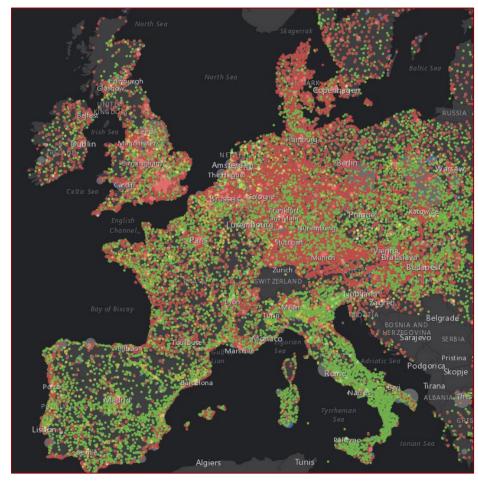


Excess Heat as a Sustainable Energy Source for District Heating: A Multi-Stakeholder Perspective.

Muhammad Bilal Siddique, Per Sieverts Nielsen, Section of Energy Economics & Modeling, DTU Management.

Background

Recapturing excess heat could power most of Europe, say experts


Preventing heat waste largely being ignored as solution to energy crisis, say environmental campaigners

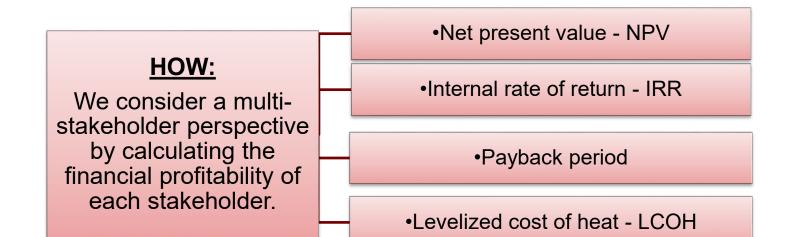
■ A data centre in France. Such energy-intensive facilities are deemed prime candidates for heat recycling. Photograph: Clement Mahoudeau/AFP/Getty Images

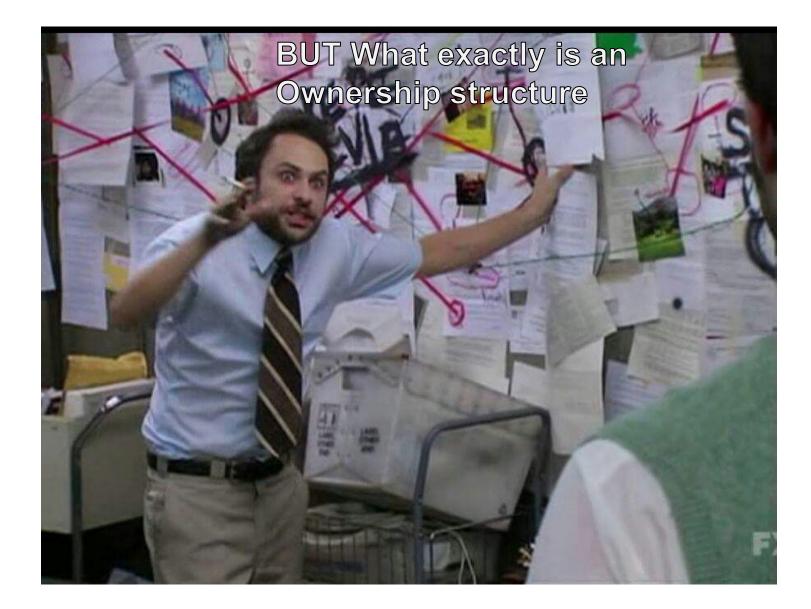
Guardian article:

Recapturing excess heat could power most of Europe, say experts | Energy efficiency | The Guardian

Reuse heat project Waste Heat Map - ReUseHeat

Background


- Many benefits of excess heat...
- But barriers remains to its wide-scape adaptation. The important ones are:
 - a) lack of awareness
 - b) complicated negotiations between industry and heating utility; mostly on price of heat, as there are different perception of heat
 - c) Who to invest and how much?
- Often ownership structure is referred as public-private partnership (for DH in general)
- Multiple studies mention it but no thorough understanding.


Objective

"To quantify the impact of different ownership structures on the business model of different actors/stakeholders involved in the EH utilization project."

Ownership structures

Technology ownership structure

- Who will own the technologies needed for excess heat utilization?
 » Investment in CAPEX and OPEX
 - » Optimal technologies from TEO output

Grid ownership structure

- Who will own or invest in heat distribution grid?
 - » Also, possible to invest in certain share of grid
 - » GIS output

These will have an impact on the finances of the stakeholders involved.

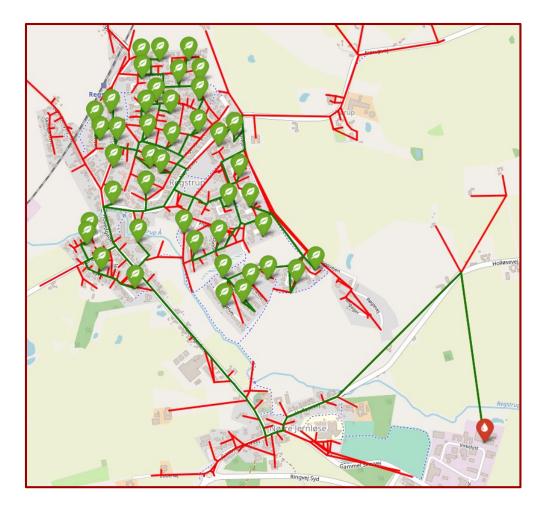


Methodology КВ Knowledge base Provides default data for all modules Leverage the power d Stores all module results STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 framework of EMB3R Sink & Sources GIS TEO Market Business CF The co2 intensity of the heat supply being used at sinks before the excess heat utilization **Core functionalities Module** project User characterizes heat sources and sinks · Internal excess h/c optimisation within Advanced properties \sim process submodule Actor Share / Owner / Technology 1 %/100 ×ч source 258 source 258 ext tech $\times \vee$ íÌÌ 0 %/100 $\times \vee$ source 259 $\times \vee$ source 259 ext tech Market Module **Business Module** 0 %/100 sink 215 utl tech Simulation of Calculation of NPV sink 215 XV $\times \vee$ generation schedules and ROI for business and market price of cases under different 0 %/100 heat ownership and sink 216 utl tech sink 216 $\times \vee$ $\times \times$ market structures 0 %/100 sink 217 utl tech sink 217 $\times \vee$ $\times \vee$

Case Study

- Regstrup Town in Holbæk Kommune, Denmark
- Population: 2000 inhabitants
- Annual heat demand: 23 GWh (estimated)
- About 500 houses
- Mostly natural gas based Individual heating
 - present crisis has forced them to look for alternative
- Two excess heat sources
 - 1) Schoeller Plast
 - 2) Super frost

Scenarios for ownership structure


• Three ownership structures are evaluated:

Scenario Name	Technologies	Heating Gird
1. Source	Source	Source
2. Sinks	Sinks	Sinks
3. Shared*	Each source & sink own their technology	Equally shared among all sources & sinks

- <u>Note</u>: Source is a commercial entity (industry with excess heat) & Sinks represent end consumers.
- * Overall, sinks take on more burden of the grid as there are 43 sinks.

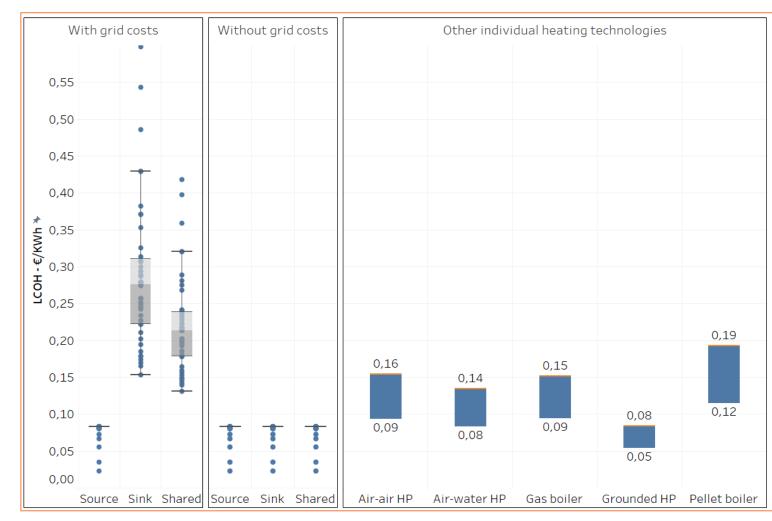
Results – Grid & Optimal technologies

TECHNOLOGY	Installed capacity (MW)	CAPEX (Million €)	Annual heat generati on (GWh)	Length (km)	Total therm al loss (MW)
Grid	2.7	16.5		31.32	0.5
Super Frost Heat Pump	0.08	0.02	0.032		
Super Frost Natural Gas Heat Recovery Boiler	2.6	1.36	22.1		
Grid has significant cost					

Results – Overall project finances

IRR - with grid cost (%)	IRR - without grid cost (%)	Payback period (years) - with grid cost	Payback period (years) - without grid cost
8	310	9.4	0.3

9.4 years payback could be quite acceptable for public entity but may not be the case for a commercial entity.



Results – Ownership structures impact on Source

Not so good for source to invest in all the technologies. However, if grid cost is excluded there is a	Ownership structure	IRR - with grid (%)	IRR - without grid (&)	Payback - with grid	Payback - without grid
strong business case.	Source	-1	132	22.16	0.759
	Sinks	inf	inf		
No investment by source, but sells excess heat - best case scenario	Shared	81	133	1.237	0.751
Also, a very good business case for the source.					

Results – Ownership structures impact on Sinks

- When grid cost is not bear by the sinks, their LCOH is the lowest.
- Physically not quite possible for each house to install its own ground sourced HP.
- Shared ownership structure could be further investigated by allocating more cost to the source.

Conclusion

- Shred ownership structure can be modified to allocate more cost to the source.
- Grid has significant cost Thus, public financing are quite important.
- Overall project finances shows a potential for profitable business case.
- More cost allocation to source or public funding of the grid cost.

Thanks

26 July 2023 DTU Management