

Improving the Coordination between Electricity and Gas Systems: A Distributed Market -Clearing Approach

<u>Aiko Schinke-Nendza^{1,(2)}</u>, Antonio J. Conejo², Christoph Weber¹ 18th IAEE European Conference, Milan, 26.07.2023

¹ University of Duisburg-Essen, House of Energy Markets and Finance, Essen, Germany
 ² The Ohio State University, Systems Engineering, College of Engineering, Columbus, OH, USA

COLLEGE OF ENGINEERING

Open-Minded

Motivation	1
Status quo & towards a novel market clearing framework	2
Case study: German electricity & natural gas systems	3
Case study: Results	4
Conclusion & outlook	5

Motivation

General challenges

Decarbonization

High shares of renewables require infrastructure expansion + flexibility

Decentralization

 Spatio-temporal decoupling of generation and demand

ر Digitalization

Extended possibilities of interconnection and participation, e.g., of "prosumers"

Central coordination: Requires some kind of thirdparty operator (e.g., an ISO) + disclosure of commercial sensitive information ^[3]

Decentralized coordination: Either local third-party operators ^[4] (+ information disclosure) or peer-to-peer trading, lacking scalability ^[5] + too complex ^[6]

Specific challenges

Compliance with EU regulation ^[1]

- Confidentiality of sensitive comm. information
- Understandable transparent market rules

- Risks and uncertainty of cross-sector operation
- Trading energy (electricity and gas) on multiple asynchronous markets leads to inefficiencies ^[2]

Flexibility market-integration

- Coordination of intertemporal constraints
- required to incentivize congestion relief

Requirements for a coordination mechanism

Independence of units: Preserve confidentiality [1]

Limited exchange of information: Limited knowledge of other networks & units [7]

Reliability & scalability: Large-scale applications

Status quo & towards a novel market clearing framework

Status quo: Market & network operation (in Germany)

Electricity^[8]

2

- Missing incentives for flexibilities
- No cross-sectoral coordination
- Inefficient congestion management
- Reduction of economic welfare

House of

Energy Markets & Finance Natural gas^[9]

- Theoretical congestions limit capacities
- Fees poss. discriminate market participants
- Reduction of economic welfare

Locational marginal prices (LMPs) & crosssector coordination

Natural gas

- Only actual congestions limit technical capacities
- LMPs adequately allocate network usage and congestions

Electricity

- Local incentives for flexibilities to avoid congestions
- Joint market clearing and congestion mgmt.

Cross-sectoral

- Empowering usage of cross-sectoral flexibility
- Reducing complexity for cross-sectoral units by harmonizing asynchronous market clearings
- Leveraging economic welfare

Proposed architecture: Distributed iterative multi -period market clearing

Casestudy: German electricity & natural gassystems(24-h)

UNIVERSITÄT

b)

14°E

6°E

8°E

10°E

12°E

12[°]E

10°E

Open-Minded

Electricity network data^[11]

3

a)

6°E

– Reference year: 2017

8°E

 ξ^{λ}

14°E

Casestudy: Cross-sectoral units & capacities

D U I S B U R G E S S E N **Open-**Minded

UNIVERSITÄT

^{26.07.2023}

19

Case study: Economic results- LMPs (in EUR/MWh)

DUISBURG ESSEN Open-Minded

UNIVERSITÄT

Case study: Results- Distributed market clearing (1/2)

Total system costs- Absolute value & deviation 10^{8} 10^{2} Deviation (in %) Costs (in EUR) 10 10^{0} 10^{7} 10^{-1} 10^{-2} 10° 200300 500200300 0 1004000 100 400 a)Iteration ν b)Iteration ν

NRMSE– ξ_r^{ν} : network vs. unit results & ξ_s^{ν} : successive price updates

4

Objective function

_

500

- Deviation drops below 0.1
 % after 110 iterations
- NRMSE (for each unit and hour) after 140 iterations:
 - Deviation between networks' and units' results falls below:
 - EL: 0.1 MW (for each hour)
 - Gas: 1 MW (for each hour)
 - Change of price updates between two iterations
 - EL: 0.1 €/MWh
 - Gas: 0.01 €/MWh
- Preliminary conclusion
 - Changes on a holistic level appear to be reasonably small
 - \rightarrow indicating convergence

House of **Energy Markets**

& Finance

Case study: Results- Distributed market clearing (DMC) (2/2)

UNIVERSITÄT DUISBURG ESSEN

2 3 4 5

Dispatch (in GWh) for 24 -h after $v = \{250, 500\}$ iterations

	Taskasalassa	Single	DMC		Diffe	Difference	
	Technology	operator	$\nu = 250$	$\nu = 500$	$\nu = 250$	$\nu = 500$	
Electricity	Conventionals	637.54	637.27	637.89	-0.27	0.35	
	Wind	617.77	617.12	617.25	-0.65	-0.52	
	Solar	7.26	7.33	7.42	0.07	0.16	
	Gas-fired	96.95	98.22	97.06	1.27	0.11	
	Power-to-gas	19.6	19.87	19.68	0.27	0.08	
	Demand	$1,\!262.76$	$1,\!262.87$	$1,\!262.75$	0.11	-0.01	
	Wind curt.	35.12	35.76	35.63	0.64	0.51	
	Solar curt.	0.32	0.26	0.16	-0.06	-0.16	
	Demand shed.	0	-0.11	0.01	-0.11	0.01	
	Total supply	$1,\!359.52$	$1,\!359.93$	1,359.62	0.41	0.1	
	Total demand	$1,\!282.36$	$1,\!282.74$	$1,\!282.43$	0.38	0.07	
	Trans. losses	77.16	77.19	77.19	0.03	0.03	
Natural gas	Import	6,529.11	$6,\!531.36$	6,529.28	2.25	0.17	
	Power-to-gas	12.77	12.95	12.82	0.18	0.05	
	Gas-fired	169.36	171.6	169.51	2.24	0.15	
	Export	$2,\!036.71$	$2,\!036.71$	$2,\!036.72$	0	0.01	
	Res. demand	$2,\!852.13$	$2,\!852.13$	$2,\!852.16$	0	0.03	
	Ind. demand	$1,\!076.71$	$1,\!076.71$	$1,\!076.74$	0	0.03	
	Export shed.	0	0	0	0	0	
	Res. shed.	0	0	0	0	0	
	Ind. shed.	0	0	0	0	0	
	Total supply	589.36	589.58	589.38	0.22	0.02	
	Total demand	552.7	552.9	552.71	0.2	0.01	
	Trans. losses	36.66	36.68	36.66	0.02	0	

- Deviations per technology are relatively small
- Total supply, demand and losses are met better
- How imperfect is the DMC? Largest deviations
 - 250 iterations: 2.25 GWh (day) ~ 93.75 MWh (hour)
 - 500 iterations: -0.52 GWh (day) ~ 21.67 MWh (hour)
- Insights into DMC imperfections:
 - Units with (almost) identical costs are affected most
 - Renewables, conventionals, gas imports and exports
 - Sector coupling units take longer to converge
 - Two prices need to converge properly

louse of

rgy Markets

Conclusion & outlook

Distributed market clearing (DMC)

Could serve as a basis for cross-sector coordination, preserving independence of units

5

- Suitable for large-scale applications with limited information exchange
- Implementational aspects
 - Today, low latency algorithmic traders react to capital markets in under 1 ms
 - DMC with approx. 10³ iterations could be achieved within a couple of seconds
 - Crucial factors:
 - Processing time of network and unit optimization
 - Physical distance between units and network operators
 - Handling of communication and algorithmic errors

- Handling of non-convexities
 - Despite the availability of proper & tight convex relaxations: More accurate models for unit commitment and gas network operation require mixed-integer models

UNIVERSITÄT

Open-Minded

- Non-convexities lead to distortions and question the interpretability of prices
 - Revenue adequacy and cost recovery not guaranteed
- Extension of framework
 - Integration of balancing markets and ancillary services procurement
 - Integration of multiple network operators and distribution networks
 - Investigation of market power within a DMC

Thank you for your attention!

Aiko Schinke-Nendza (M.Sc.)

Team lead & PhD candidate House of Energy Markets & Finance University of Duisburg-Essen Faculty of Economics Universitätsstraße12 45141 Essen

Former research scholar & DAAD-Fellow

Systems Engineering The Ohio State University College of Engineering 1971 Neil Avenue Columbus, OH 43210-1210

References

- [1] EU Parliament, 2019. Regulation on the internal market for electricity (EU) no. 2019/943.
- [2] Ordoudis, C., Pinson, P., Morales, J.M., 2019. An integrated market for electricity and natural gas systems with stochastic power producers. European Journal of Operational Research 272, 642–654.
- [3] He, C., Zhang, X., Liu, T., Wu, L., Shahidehpour, M., 2018a. Coordination of interdependent electricity grid and natural gas network—a review. Current Sustainable/Renewable Energy Reports 5, 23–36.
- [4] Ding, T., Jia, W., Shahidehpour, M., Han, O., Sun, Y., Zhang, Z., 2022. Review of optimization methods for energy hub planning, operation, trading, and control. IEEE Transactions on Sustainable Energy 13, 1802–1818.
- [5] Sorin, E., Bobo, L., Pinson, P., 2018. Consensus-based approach to peer-to-peer electricity markets with product differentiation. IEEE Transactions on Power Systems 34, 994–1004.
- [6] Chen, Y., Wei, W., Liu, F., Wu, Q., Mei, S., 2018. Analyzing and validating the economic efficiency of managing a cluster of energy hubs in multicarrier energy systems. Applied energy 230, 403–416.
- [7] Chen, S., Conejo, A.J., Sioshansi, R., Wei, Z., 2019. Operational equilibria of electric and natural gas systems with limited information interchange. IEEE Transactions on Power Systems 35, 662–671.
- [8] Weber, C., Möst, D., Fichtner, W., 2022. Economics of Power Systems. Springer.
- [9] Gotzes, U., Heinecke, N., R"ovekamp, J., 2015. Chapter 3: Regulatory rules for gas markets in germany and other european countries, in: Evaluating gas network capacities. SIAM, pp. 45–64.
- [10] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al., 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends[®] in Machine learning 3, 1–122.
- [11] Diettrich, J., Medjroubi, W., Pluta, A., 2020. Scigrid gas iggin. Data retrieved from Zenodo, https://doi.org/10.5281/zenodo.4288458 [Titel anhand dieser DOI in Citavi-Projekt übernehmen].
- [12] Kunz, F., Weibezahn, J., Hauser, P., Heidari, S., Schill, W.P., Felten, B., Kendziorski, M., Zech, M., Zepter, J., von Hirschhausen, C., et al., 2017. Reference data set: electricity, heat, and gas sector data for modeling the german system. Zenodo.

Backup: Mathematical foundation

Abstract structure

Convex multi-period problem: An omniscient single-operator

Distributed market clearing* (Iteration v)

UNIVERSITÄT

DUISBURG ESSEN

Open-Minded

1. Unit subproblem

$$\min_{x_l} \quad f_l(x_l) + \sum_{k \in \mathcal{K}} \left[-\left(\lambda_{k,l}^{\nu-1}\right)^\top \widetilde{x}_{k,l} + \frac{\rho_k}{2} \left\| \psi_{k,l}^{\nu-1} - \widetilde{x}_{k,l} \right\|_2^2 \right]$$

s.t. $x_l \in \mathcal{X}_l$,

2. Sectoral network subproblem

$$\min_{y_k} \quad g_k(y_k) + \sum_{l \in \mathcal{L}} \left[\left(\lambda_{k,l}^{\nu-1} \right)^\top \psi_{k,l} + \frac{\rho_k}{2} \left\| \psi_{k,l} - \widetilde{x}_{k,l}^{\nu-1} \right\|_2^2 \right]$$

s.t. $y_k \in \mathcal{Y}_k^{\psi},$

3. Price updates (with constants φ_k^{ν} and ρ_k^{ν})

$$\lambda_{k,l}^{\nu+1} = \lambda_{k,l}^{\nu} + \varphi_k^{\nu} \rho_k^{\nu} \left(\psi_{k,l}^{\nu} - \widetilde{x}_{k,l}^{\nu} \right),$$

Reformulating balances as part of networks

$$\sum_{l \in \mathcal{L}} A_{k,l} \psi_{k,l} + B_k \widetilde{y}_k = c_k, \quad :\lambda_{k,n}, \quad \forall k \in \mathcal{K},$$
$$\psi_{k,l} = \widetilde{x}_{k,l}, \qquad \qquad \forall l \in \mathcal{L}, \forall k \in \mathcal{K}.$$

* Using decomposition techniques, here, alternating direction method of multipliers (ADMM), cf. [10]

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

House of Energy Markets & Finance

Backup: Existing market design in Germany

Energy Markets & Finance DUISBURG ESSEN

UNIVERSITÄT

Time El. TSOs El. markets El. units Gas units Gas markets Gas TSOs Technical Evaluation of capacities techn. capacities Until day n-1 Capacity Capacity booking auction Day-ahead Day-ahead Day-ahead Day-ahead Evaluation of Day n-1 market clearing capacity booking² market clearing² techn. capacities trading¹ Countertrading Intra-day Intra-day Renomination Day n market clearing trading³ of capacities⁴ Transport Redispatch Until operation scheduling V Network Network Unit operation Unit operation **O**peration operation operation ¹ Hourly prices ³ 15 min (5 min in advance) ² Daily prices ⁴ Hourly (2 h in advance) Focus: Day-ahead distributed market clearing (DMC) Intra-day or real-time DMC \rightarrow Balancing + ancillary services House of Part of intra-day DMC or simple renomination

Sources: [8], [9] 15

Backup: Electricity and gas time series data

UNIVERSITÄT DUISBURG ESSEN

House of Energy Markets & Finance

Backup: Convergence on a technology level EL

D U I S B U R G E S S E N Open-Minded

UNIVERSITÄT

Backup: Convergence on a technology level- Gas

DUISBURG ESSEN Open-Minded

UNIVERSITÄT

Backup: Gas model

UNIVERSITÄT DUISBURG ESSEN Open-Minded

$$\begin{split} \sum_{t\in\mathbb{T},m\in\mathbb{M}} \left[\sum_{s\in\mathbb{S}(m)} c_s^{gas,S} Q_{s,t}^S \right] \\ \cong_t^{aas}, \Theta_t^{gas} &+ c_m^{gas,VOLL} \left(Q_{m,t}^{D+} - Q_{m,t}^D \right) \\ &+ c_m^{gas,Ex} \left(Q_{m,t}^{D,Ex+} - Q_{m,t}^{D,Ex} \right) \right] \Delta t, \\ \text{s.t.} & \left[Q_{m,t}^{N,S} + Q_{m,t}^F + Q_{m,t}^C + Q_{m,t}^{N,S,PtG} \\ &= Q_{m,t}^D + Q_{m,t}^{N,D,GFU} + Q_{m,t}^{D,Ex} \right] \\ Q_{m,t}^{N,S} &= \sum_{s\in\mathbb{S}(m)} Q_{s,t}^S, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ Q_{m,t}^{N,S,PtG} &= \sum_{k\in\mathbb{K}_{gas}^{PtG}(m)} Q_{k,t}^{S,PtG}, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ Q_{m,t}^{N,D,GFU} &= \sum_{k\in\mathbb{K}_{gas}^{Qs}(m)} Q_{k,t}^{D,GFU}, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ Q_{m,t}^{N,D,GFU} &= \sum_{k\in\mathbb{K}_{gas}^{Qs}(m)} Q_{k,t}^{D,GFU}, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ Q_{m,t}^{min} &\leq p_{m,t} \leq p_{max}^m, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{s,t}^S \leq Q_{s,t}^{S+}, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^{D,Ex+}, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^{D,Ex+}, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D \leq Q_{m,t}^D, \qquad \forall m \in \mathbb{M}, t \in \mathbb{T}, \\ 0 \leq Q_{m,t}^D \leq Q_{m,t}^D \leq Q_{m,t}^D \in \mathbb{K}, \end{aligned}$$

(20a)

(20b)

(20c)

(20d)

(20e)

(20f) (20g) (20h) (20i)

$Q_{m,t}^{C} = \sum_{n \in \mathbb{C}^{in}(m)} \left(Q_{m,n,t}^{C,In} - Q_{m,n,t}^{C,Out} \right) + \sum_{n \in \mathbb{C}^{out}(m)} \left(Q_{n,m,t}^{C,In} - Q_{n,m,t}^{C,Out} \right),$	$\forall m \in \mathbb{M}, t \in \mathbb{T},$	(20j)
$Q_{n,m,t}^{C,Out} = Q_{m,n,t}^{C,In},$	$\forall m,n\in\mathbb{C},t\in\mathbb{T},$	(20k)
$Q_{m,n,t}^{C,Out} = Q_{n,m,t}^{C,In} + Q_{m,n,t}^{C,Loss},$	$\forall m,n\in\mathbb{C},t\in\mathbb{T},$	(20l)
$\alpha_m^{C,min} p_{m,t} \le p_{n,t} \le \alpha_m^{C,max} p_{m,t},$	$\forall m,n\in\mathbb{C},t\in\mathbb{T},$	(20m)
$Q_{m,n,t}^{C,Out} \le Q_{m,n}^{C,max},$	$\forall m,n\in\mathbb{C},t\in\mathbb{T},$	(20n)
$Q_{m,t}^F = \sum_{n \in \mathbb{P}^{in}(m)} \left(Q_{m,n,t}^{F,In} - Q_{m,n,t}^{F,Out} \right),$	$\forall m \in \mathbb{M}, t \in \mathbb{T},$	(200)
$\bar{Q}_{m,n,t}^{F} = \left(Q_{n,m,t}^{F,In} + Q_{m,n,t}^{F,Out}\right)/2,$	$\forall m,n\in \mathbb{P},t\in \mathbb{T},$	(20p)
$\left[\bar{Q}_{m,n,t}^{F} \left \bar{Q}_{m,n,t}^{F} \right = W_{m,n} \left(p_{m,t}^{2} - p_{n,t}^{2} \right),$	$\forall m,n\in\mathbb{P},t\in\mathbb{T},$	(20q)
$\bar{V}_{m,n,t}^{LP} = K_{m,n}^{LP} \left(p_{m,t} + p_{n,t} \right) / 2,$	$\forall m,n\in\mathbb{P},t\in\mathbb{T},$	(20r)
$\Delta V_{m,n,t}^{LP} = \left(Q_{m,n,t}^{F,Out} - Q_{n,m,t}^{F,In} \right) \Delta t,$	$\forall m,n\in \mathbb{P},t\in \mathbb{T}.$	(20s)
$\bar{V}_{m,n,t}^{LP} - \bar{V}_{m,n,t-1}^{LP} = \Delta V_{m,n,t}^{LP},$	$\forall m,n\in \mathbb{P},t\in \mathbb{T}.$	(20t)
$\bar{V}_{m,n,t_0}^{LP} = \bar{V}_{m,n, \mathbb{T} }^{LP},$	$\forall m,n\in\mathbb{P},$	(20u)

Convex linear relaxation for gas network

UNIVERSITÄT DUISBURG ESSEN **Open-**Minded

Relaxation via McCormick envelopes

Approximation error

0

0.2

