IAEE European Conference, Milan, 26 July 2022

How aggregate electricity demand responds to hourly wholesale price fluctuations

Lion Hirth Tarun Khanna Oliver Ruhnau <u>oliver.ruhnau@uni-koeln.de</u>

A Service of

Leibniz-Informationszentruz Wirtschaft Leibniz Information Centre for Economics

Hirth, Lion; Khanna, Tarun; Ruhnau, Oliver

Working Paper

How aggregate electricity demand responds to hourly wholesale price fluctuations

Research question and motivation

Research question

How much does hourly aggregate electricity demand respond to changes in dayahead prices in the wholesale markets of electricity?

Hourly price response of electricity demand is relevant

- Important input to electricity market models and analyses
- Integration of wind and solar power
- Substitute for firm/back-up generators
- Mitigate market power

Previous studies

- Bottom-up flexibility *potential* of existing and future electricity demand
- Empirical work based on annual/quarterly/monthly data

Identification strategy

We also control for other variables (fuel and CO₂ prices) and more time dummies (weekday and year)

Using wind energy as an instrument

- Weather has a long history of being used as instrument
- Meets the three important criteria to serve as an instrument
 - **Relevance:** wind energy generation should impact wholesale electricity price
 - Exogeneity: wind energy generation should note be endogenously impacted by demand (or by a confounder impacting both wind energy and demand)
 - Exclusion restriction: wind energy should impact demand only through electricity price
- Variation in wind energy generation is <u>highly correlated</u> with variation in electricity prices
- <u>Robustness checks</u> for potential challenges to exogeneity of wind generation

Potential challenges using wind generation as instrument

	Identification challenge	Direction of bias	How addressed / tested?
Economic	Low wind generation due to economic	Overestimate	Exclude negative prices
curtailment	curtailment at negative prices is		Use wind speed as an
Exogeneity/	correlated with low load; this may be		instrument
confounders	falsely attributed to price response		
Demand	If extremely high wind speeds	Underestimate	Exclude times of very high
disruption	(▲ wind generation, prices) cause		wind speeds $ ightarrow$ estimates
Exclusion	electricity-consuming infrastructure		do not change
restriction	to break down (e.g., railroads) >		
	would be erroneously attribute to		
	price response		

We discuss and address further challenges in the paper

Model specification and estimation

- Five different model specifications that capture:
 - Linear, loglinear and nonparametric relationships between price and demand
 - Linear and nonparametric relationships between demand/price and control variables
- Estimated using the 2 Stage Least Squares (2SLS) or 2 Stage Generalized Additive Models (2SGAM)

Model	1	2	3	4	5
Model class	Parametric models		Nonparametric models		models
Specification of controls	Linear		Linear/Nonparametric		ametric
Estimator	Two-sta square	age least es (2SLS)	Two-st	age generaliz model (2SG <i>I</i>	ed additive AM)
Demand-price relationship	Linear	Loglinear	Linear	Loglinear	Non- parametric

Parametric models

$$Price_t = \alpha_0 + \alpha_1 I_t + \alpha_C C_t + \alpha_D D_t + v_t$$
(1)

 $Demand_t = \beta_0 + \beta_1 \widehat{Price}_t + \beta_c C_t + \beta_D D_t + u_t$ (2)

<i>Price</i> _t	Wholesale price of electricity in hour t
<i>Price</i> _t	Predicted electricity price based on Eq. (1)
$Demand_t$	Electricity demand in hour t
β_1	Linear demand response to electricity price
I _t	Instrument: wind energy generation
\boldsymbol{C}_t	Controls: solar generation, HDD, CDD, coal, gas and CO_2 prices
\boldsymbol{D}_t	Dummies: hour of day, weekday, month of year, year

- Estimated using the 2 Stage Least Squares (2SLS) estimator
- Heteroskedasticity-and-Autocorrelation-Consistent Standard Errors

Data

Time series (via the Open Power System Data platform):

- Hourly "Total Load" from ENTSO-E Transparency Platform
- Hourly day-ahead wholesale electricity price from EPEX
- Hourly actual wind generation from ENTSO-E Transparency Platform
- Daily and national average ambient temperature from NASA MERRA-2
- Daily EUA prices; monthly coal and gas fuel prices from IMF data

Scope

- Germany
- 2015-2019 (no energy crisis)
- No holydays, bridge-days, Christmas period

Parametric results

First stage: effect of wind on price

	2SLS	GAM
Adjusted R ²	0.76	0.79
Partial R ² of wind energy	0.46	-
Partial F-statistic	930	-
Wind energy (GW)	-0.94 ***	Spline***
	[-1.01, -0.88]	

Second stage: effect of price on demand

	Linear		Log-linear ^a		
	2SLS	GAM	2SLS	GAM	
Adjusted R ²	0.89	0.94	0.90	0.94	
Price (€/MWh)	-79.6 ***	-67.3 ***	-0.14 ***	-0.12 ***	
	[-91.3, -67.8]	[-72.2, -62.7]	[-0.16, -0.12]	[-0.13, -0.11]	

- Plausible coefficients of covariates
- Statistically significant and robust to model specifications and sensitivity checks
- Temporal and spatial heterogeneity suggests that industry is responding to prices

Nonparametric results

First stage

Second stage

- 1st stage non-linear results are plausible
- 2nd stage non-linear results are less clear & demand seems linear when only looking at day hours

Results in perspective

- 1 €/MWh increase in wholesale prices → reduction in aggregate demand of 70-80 MW (linear estimates) or 0.12-0.14% (log-linear estimates)
- For the avg. price and demand, the dimensionless elasticities is about -0.05
 - Knaut and Paulus (2016): -0.02 to -0.13 (similar approach)
 - Bönte et al. (2015): -0.43 (bids at the power exchange, not aggregate demand)
 - Lijesen (2007): -0.0014 (lagged price as instrument)
- For 27 GW variation in wind generation (5-95% percentile) → variation of 26 €/MWh in prices → about 2 GW demand response
 - 4% of avg. demand
 - 7% of wind generation
 - Studies on the future potential of industrial demand response: 2-5 GW (Klobasa 2007, Paulus and Borggrefe 2011, Gils 2015, Gruber 2017, SynErgie 2018, Kochems 2020) (often bottom-up estimates and surveys)

Conclusions & outlook

Conclusions

- Electricity demand responds to hourly wholesale price variations already today
- These are average values for a period with relatively flat electricity prices (no scarcity prices, no energy crisis) and little price exposure (only industry)
- More demand response expected with increasing price exposure (smart meters & tariffs) and new technologies (EVs, heat pumps, electrolyzers)

Outlook

- Demand response during the energy crisis (upcoming WP at EWI)
- Implications of autocorrelation in the treatment variable (upcoming WP at the Hertie School)

Thank you!

Prof. Dr. Oliver Ruhnau

Assistant Professor for Energy Market Design University of Cologne

Research Scientist Institute of Energy Economics (EWI)

oliver.ruhnau@uni-koeln.de http://bit.ly/m/ruhnau

ECONSTOR *Make Your Publications Visible.*

A Service of

2BW Lebnir-Informationszentrum Wirtschaft Lebniz Information Centre for Economics

Hirth, Lion; Khanna, Tarun; Ruhnau, Oliver

Working Paper

How aggregate electricity demand responds to hourly wholesale price fluctuations

Detailed results

Results from first stage regression

	2SLS	GAM
Adjusted R ²	0.76	0.79
Partial R ² of wind energy	0.46	-
Partial F-statistic	930	-
Wind energy (GW)	-0.94 ***	Spline***
	[-1.01, -0.88]	·
Solar energy (GW)	-1.12 ***	Spline***
	[-1.19, -1.05]	
Heating degrees (°C)	0.36 ***	-
	[0.22, 0.49]	
Cooling degrees (°C)	0.45 ***	-
	[0.33, 0.58]	
Temperature (°C)	-	Spline***
EUAs (€/t)	1.08 ***	0.75 ***
	[0.84, 1.32]	[0.68, 0.83]
Coal price (€/MWh)	1.67 ***	Spline***
	[1.33, 2.01]	
Gas price (€/MWh)	0.35 ***	Spline***
	[0.12, 0.57]	
Hour	Dummies	Dummies
Weekday	Dummies	Dummies
Month	Dummies	Dummies
Year	Dummies	Dummies
Time	-	Spline***

95% confidence intervals are reported in brackets; Significance levels: 0 *** 0.001 ** 0.01 * 0.05 The significance of the dummy variables can be read from Figure A1 in the Appendix.

Results from first stage regressions: nonparametric

Results from second stage regressions

	Linear		Log-li	Log-linear ^a		
	2SLS	GAM	2SLS	GAM		
Adjusted R ²	0.89	0.94	0.90	0.94		
Price (€/MWh)	-79.6 ***	-67.3 ***	-0.14 ***	-0.12 ***		
	[-91.3, -67.8]	[—72.2, —62.7]	[-0.16, -0.12]	[-0.13, -0.11]		
Solar energy (GW)	-125.3 ***	Spline	-0.14 ***	Spline		
	[—153.6, —97.1]		[-0.19, -0.10]			
Heating degrees (°C)	310.9 ***	-	0.55 ***	-		
	[279.8, 342.0]		[0.49, 0.61]			
Cooling degrees (°C)	149.9 ***	-	0.32 ***	-		
	[113.0, 186.8]		[0.25, 0.38]			
Temperature (°C)	-	Spline ***	-	Spline ***		
EUAs (€/t)	98.1 ***	Spline ***	0.19 ***	Spline ***		
	[37.5, 158.7]		[0.06, 0.31]			
Coal price (€/MWh)	299.8 ***	Spline ***	0.53 ***	Spline ***		
	[221.0, 378,7]		[0.37, 0.68]			
Gas price (€/MWh)	14.1	Spline ***	0.03	Spline ***		
	[—39.4, 67.7]		[-0.08, 0.14]			
Hour	Dummies	Dummies	Dummies	Dummies		
Weekday	Dummies	Dummies	Dummies	Dummies		
Month	Dummies	Dummies	Dummies	Dummies		
Year	Dummies	Dummies	Dummies	Dummies		
Time	-	Spline ***	-	Spline ***		

^a All estimated parameters of the log-linear model are reported as percentages.

95% confidence intervals are reported in brackets; significance levels: *** 0.001 ** 0.01 * 0.05.

The significance of the dummy variables can be found in Figure A2 in the Appendix.

Non-linear relationship between price and demand?

- Relationship between price and demand is statistically significant. Appears to be a kink in the otherwise linear relationship around the median price
- However, we cannot think of a plausible fundamental explanation

Temporal variation in estimates of demand elasticity

- Results are quite robust across years; no time trend
- Price elasticity significantly lower during weekends and nighttime hours because only industry can respond to wholesale prices?

Day vs. Night

- When only looking at daytime hours, we find a mostly linear demand curve
- The nonlinearity seems to stem from nighttime hours. This is also supported by <u>model diagnostics</u>.
- Industrial consumers tend to be more responsive during weekdays?

Regional differences across Germany

- % change in demand per 1 €/MWh change in electricity price is close to zero for 50Hertz and TransnetBW, similar to the national estimate for TenneT, and about twice as large for Amprion
- As Amprion is home to most of Germany's heavy industry, this supports the idea that most of the demand response is from industrial consumers

Robustness checks

Potential challenges using wind generation as instrument

	Identification challenge	Direction of bias	How addressed / tested?
Seasonality	If wind energy generation and	Underestimate/	Control for seasonality (time
Exogeneity/	electricity consumption are both	Overestimate	dummies / nonparametric
confounders	seasonal (year, day, other time scales)	(annual	time trend)
	and hence correlated, which is the case	seasonality)	
	at least over the year, we would		
	attribute this erroneously to price		
	response		
Temperature	If wind energy generation and demand	Underestimate/	Control for temperature
Exogeneity/	are both correlated with temperature,	Overestimate	(heating / cooling degrees,
confounders	we would attribute this erroneously to		nonparametric)
	price response		
Economic	Low wind generation due to economic	Overestimate	Exclude negative prices
curtailment	curtailment at negative prices is		Use wind speed as an
Fxogeneity/	correlated with low load; this may be		linstrument
confounders	falsely attributed to price response		
Grid	Low wind generation due to grid	Underestimate	Use wind speed as an
curtailment	curtailment is correlated with high		instrument
Exageneity	load; this may bias our price response		
confounders	estimate		

Potential challenges using wind generation as instrument

	Identification challenge	Direction of	How addressed / tested?
		bias	
Heating	If high wind speeds (\checkmark wind	Overestimate	Data split by season $ ightarrow$
Exclusion	generation, - prices) increase demand		estimates do not differ
restriction	for (electric) heating, high wind		between high heating
	generation will be associated with		season (winter) and low
	higher demand > would be erroneously		heating (summer) season
	attributed to price response		
Cooling	If high wind speeds (\checkmark wind	Underestimate	Data split by season $ ightarrow$
Exclusion	generation, $-$ prices) decrease		estimates do not differ
restriction	demand for (electric) cooling, high		between high cooling
	wind generation will be associated with		season (summer) and low
	lower demand > would be erroneously		cooling (winter) season
	attributed to price response		
Demand	If extremely high wind speeds ($ ightarrow$ wind	Underestimate	Exclude times of very high
disruption	generation, - prices) cause electricity-		wind speeds $ ightarrow$ estimates
Exclusion	consuming infrastructure to break		do not change
restriction	down (e.g., railroads) > would be		
	erroneously attribute to price response		

Potential challenges using solar generation as instrument

	Identification challenge	Direction of bias	How addressed / tested?
Incomplete	Solar generation is estimated, not	Underestimate	• Solar not used as
measurement	always metered. If it is not estimated		instrument in main
Exclusion	accurately, more generation could		specification
restriction	mean less (observed) load, this		• When solar is added as
	could be erroneously attributed to		instrument, estimate
	price response		changes only slightly -
			and becomes smaller

Other instruments

- Wind speed instead of wind energy generation as an instrument avoids some exogeneity concerns regarding congestion etc.
- Use both wind and solar energy generation as an instrument to better estimate \widehat{Price} in the first stage

Robustness to extreme events

• Excluding 1% highest wind speeds based on different wind speed data

Serial correlation

Both the price and demand time series exhibit serial correlation. Main model specifications use HAC standard errors (parametric) and simulated CI (nonparametric) to overcome this. Other options:

- FGLS or Cochrane–Orcutt (CORC) estimator for the parametric models. The FGLS estimator on stage 2 estimation returns a smaller estimate (-72 MW per 1 €/MWh increase in price vs. -79 MW) and CI are slightly larger (14 vs. 10)
- Estimate the first difference model (keeping time and seasonal dummies level) to remove correlation in errors.

System demand (load) ≠ wholesale demand (EPEX)

(ii) Supply and demand aggregation

From Knaut and Paulus (2016)

Because of utility portfolios and OTC contracts,

UNIVERSITY

OF COLOGNE

- wholesale demand includes generators buying instead of producing
- wholesale supply includes consumers selling instead of consuming

Hourly price response ≠ short-term price elasticity

Economists usually investigate yearly data

- Short-term: response to a price change in the same year
- Long-term: response to a price change in the previous year

Examples

- Eskeland and Mideska 2010 and Azevedo et al. 2011
 - Europe: -0.2
- Cialani and Mortazavi 2018. Household and industrial electricity demand in Europe. *Energy Policy*
 - Europe: -0.03...-0.05
- Csereklyei 2020. Price and income elasticities of residential and industrial electricity demand in the European Union. *Energy Policy*
 - Europe: -0.08

Empirical literature on hourly price response

Lijesen 2007. Energy Economics Paper

- NL 2003: -0.0014 (exponential demand curve)
- Lagged price as instrumental variable

Knaut and Paulus 2016. EWI Working Paper

- DE 2015: -0.02...-0.12 (linear demand curve)
- Wind energy as instrumental variable

Kulakov and Ziel 2019. HEMF Working Paper

- DE 2017: -0.0001 (nonparametric curve)
- Decomposition of wholesale demand and supply

In summary: single years and countries, different approaches & results

Why Germany?

Germany combines several factors:

- High domestic wind share
- Imports and exports do not matter so much
- Not so much (hydro) storage
- Diverse conventional generation mix (many steps in the merit order)
- Highly competitive market with competitive price formation (no regulated prices)

Hence, wind power has a strong explanatory power for wholesale prices (strong instrument)

Who "sees" wholesale price fluctuations?

Residential consumers

• Virtually no real-time pricing

Large-scale consumers

• Partial price exposure (real-time tariffs or own market access)

Additional tariff components

- Time-invariant surcharges (taxes, etc.) on top of wholesale price
 → their true price elasticity (in %) is higher than the one we estimate here
- Incentives *against* flexibility (reduced grid fees for continuous consumption)

Weak instruments?

- Substantial partial R² for the instrument (wind power) in the 1st stage
- Corresponding F-statistic varies substantially, but always > 10
- Smallest R² and F-statistic for 2016, where GAM estimate is quite low

Nonparametric models

$$Price_t = \alpha_0 + s(l_t) + s(C_t^s) + \alpha_D D_t + v_t$$
(3)

$$Demand_t = \beta_0 + s(Price_t) + s(\mathcal{C}_t^s) + \beta_D D_t + s(\hat{v}_t) + u_t$$
(4)

Price _t	Wholesale price of electricity in hour t
Demand _t	Electricity demand in hour t

- *I*_t Instrument: wind energy generation
- C_t^s Non-linear controls: solar generation, CO₂ price, ambient temperature, coal and gas prices, time
- D_t Dummies: hour of day, weekday, month of year, year
- $s(\cdot)$ Modeled splines
- Estimated using a 2 Stage Generalized Additive Model (2SGAM) approach (Radice and Marra 2011)

2-stage generalized additive model (GAM) estimation

$$Price_t = \alpha_0 + s(I_t) + \alpha_{lin}C_t^{lin} + s(C_t^s) + \alpha_D D_t + v_t$$
(1)

 $Demand_t = \beta_0 + \beta_1 Price_t (or s(Price_t)) + \beta_{lin} C_t^{lin} + s(C_t^s) + \beta_D D_t + s(\hat{v}_t) + u_t$ (2)

- The approach is based on work done by <u>Marra and Radice</u> (2011) and <u>Zanin, Radice and Marra</u> (2015)
- GAMs extend linear models by allowing the determination of possible nonlinear effects of predictors on the response variable. A GAM has a model structure y = g−1(η) + e, where g−1(η) = μ = E(y|X), with g(·) being a suitable link function
- The presence of an endogenous relationship between the demand and price can lead to inconsistent estimates. But because $s(\hat{v}_{t})$ in Eq. 2 allows us to flexibly account for endogeneity, the linear/nonlinear effects of the endogenous regressors can be estimated consistently.

Causal relationships: instruments, exclusion restriction

Causal relationships: time trend and further controls

Causal relationships: the role of lagged prices (Granger Causality)

t=1

Causal relationships: import/export

Statistical Appendix

Stationarity checks

- 1. All time series in OLS regressions need to be stationary. If a time series is nonstationary, then all the typical results of OLS analysis are not valid
- If there are inherent trends in a series then its non-stationary. Trends can be either
 1) deterministic or 2) stochastic.
- 3. Deterministic trends are the type that we have been looking at seasonal, daily, annual trends. Detrending the series or including a trend variable in the regression solves this problem.
- 4. Usually, time series of electricity spot prices are assumed (i) to have deterministic daily, weekly and yearly seasonal patterns, (ii) to show price dependent volatilities, and (iii) to be stationary (after controlling for the seasonal patterns); see Huisman and De Jong (2003), Knittel and Roberts (2005), Kosater and Mosler (2006), Huisman, Huurman and Mahieu (2007) and many others.
- 5. A stochastic trend is random and varies over time. Example: highly persistent time series. $Y_t = p * Y_{t-1} + u_t$ or $Y_t = Y_{t-1} + time$ trend $+ u_t$. This is also called presence of a unit root. If |p| < 1 then the series is weakly stationary or unit root is absent and series can be used in regressions. ADF tests with lags confirms the absence of a unit root in our time series.

Autocorrelation checks

- Another problem is autocorrelation of errors. This is similar to 4 except that autocorrelation can exist even in stationary series. So serial correlation problems exist with or without stationarity problems.
- This is a problem for the standard errors mostly. Serial correlation in the errors can make them appear smaller than they should be (type I error) but the coefficient estimates are usually still unbiased or at least consistent.
- GMM that corrects for serial correlation is useful. We can also just test for errors coming from the regression for correlation.
- Dynamically incomplete models, where the lags are not taken into account will also
 result in autocorrelation in the series. Not sure how this impacts our case. What also
 complicates our case is that not only is demand at t related to lead and lag prices
 but the relationship is endogenous, i.e., prices at t can also be caused by demand at
 t +/-h. How this impacts the model is uncertain and we cannot really take this into
 account. We should be looking at things like Granger causality etc.

Model diagnostics: Daytime hours (2SLS)

Model diagnostics: Night time hours (2SLS)

Model diagnostics: Night time hours (2SGAM)

Interpretation of German estimates

How much electricity demand from the different sectors

- Most of the demand comes from industry, thereafter commercial and public sectors \rightarrow when only looking at weekdays these sectors will be even larger
- Within industry, (petro-)chemical, machinery, iron & steel, other metals, food, and paper are the largest sectors
- On top of final energy demand: power-to-heat in district heating?

UNIVERSITY

OF COLOGNE

ew

Households

Germany

- Lack of smart meters (numbers?)
- Few household aggregators:
 - Pebbles: < 1 MW
 - Sonnen: focus on balancing market
 - RegEE (Thüga): < 1 MW
- Few tariffs:
 - Octopus: > 2.5m customers but smart tariffs are not yet launched in DE
 - Awattar

Other EU countries have more of this

- Octopus energy has smart tariffs operating in UK
- McKenna et al. 2021 on Austria, 1500 consumers
- Spain?

Industry

The theoretical demand response potential

- Klobasa 2007, Paulus and Borggrefe 2011, Gruber 2017: 2.3–4.3 GW
- Gils 2014: about 5 GW
- Kochems 2020: 5 GW
 - Paper: 2 GW
 - Steel: 1 GW
 - Non-ferrous metals: 1 GW
 - Chlor-alkali electrolysis: 0.5 GW
 - Process cold: 0.5 GW
- SynErgie 2018: 2.2 GW (mostly glas, chemical, metal)

Or is it just a measurement error?

- There is a substantial difference between ENTSO-E and EUROSTAT, but this difference decreases
- The difference decreases even though auto-production remains constant
- Despite the decrease in difference, our estimates stay the same

