

Guilford Glazer Faculty of Business and Management Ben-Gurion University of the Negev

Management leads Society

ASSESSING THE EFFECT OF ENVIRONMENTAL FEEBATE OF PRIVATE CARS ON ECONOMIC WELFARE

Ofir Rubin Ben-Gurion University, Israel

with

Yanai Ankaoua¹, Stav Rosenzweig¹, Aviv Steren^{1,2}, Ziv Bar-Nahum²

¹ Ben-Gurion University, ² The Hebrew University of Jerusalem

18th IAEE European Conference Bocconi University, Milan, 24-27 July 2023

Introduction

Private cars contribute about 20% of total CO₂ emissions (IEA, 2019)

Many countries pledge to reach net zero emissions over the coming decades (IEA, 2021; European Commission, 2019; Government of the USA, 2021)

 \setminus and implement policies design to decrease pollution from cars

regulating manufacturers

incentivizing consumers to buy cleaner cars

What is an environmental feebate?

Polluting cars \rightarrow High purchase tax

Less polluting cars \rightarrow Rebates or subsidies

\ A frequently used policy measure to encourage consumers to buy less polluting cars

∖ Programs introduced in the US, France, Sweden, Japan, etc.

Do feebates help decrease pollution from car fleets? Good for consumers?

Good for car manufacturers?

Environmental feebate programs

- **Japan 2009** Substantial **economic surplus**, despite only minor changes in energy efficiency of the car fleet (Konishi and Zhao 2017)
- **Germany 2008** Effect on environment cannot counterbalance the **decrease in welfare** (Adamou et al. 2014)
- **Sweden 2007 Decreased emissions but extremely cost inefficient.** Transition to high-efficiency cars would have taken place regardless (Huse and Lucinda (2014)

France 2008 –

- ∖ Decrease in emissions but 2025 national targets will not be met (Kessler et al. 2023).
- Negative impact on the environment (D'Haultfœuille et al. 2014)
- \land Consumers shifted to cars emitting less CO₂, CO, and THC, but more hazardous pollutants NOx and PM (Durrmeyer 2022)

Research context

Feebate program implemented in Israel in 2009

∖ The only feebate program in the world to include all 5 key pollutants:

CO₂, CO, THC, NOx and PM

A pollution score was calculated for each new car model:

 $Pollution\ score = \frac{30 * CO_2 + 500 * CO + 10,000 * NO_X + 900 * THC + 20,000 * PM}{30}$

The feebate in Israel

Pollution level	Pollution score	Tax rat e	Rebate (NIS, in 2015 values)
1 (Emission free)	0-50	10%	
2 (Plug-in hybrid)	0-100	20%	
2 (Hybrid)	21-130	30%	
2	51-130		16,238
3	131-150		14,885
4	151-170		12,991
5	171-175		11,368
6	176-180		10,013
7	181-185		8,931
8	186-190	838	7,848
9	191-195	0.0 %	7,036
10	196-200		5,955
11	201-205		5,413
12	206-210		4,331
13	211-220	0	3,518
14	221-250		2,165
15	251-400		-

What can be observed before vs. after the feebate?

Distribution of new cars by pollution level

Ŷ

Average per-kilometer emission profile of the fleet of new cars

Authors' calculations based on data from the Israel Ministry of

Transport and Road Safety

Data

Census – new car sales 2007 - 2018 (Ministry of Transport and Road Safety)

Emission data (Ministry of Transport and Road Safety) Advertising expenditure ('Ifat'-Market Research) Household survey data (Central Bureau of Statistics)

Differentiated goods model

Concentrated structure of car markets (Berry, 1994; Fershtman and Gandal, 1998; Verboven, 1996; Kessler et al., 2023)

Differentiated goods model

Concentrated structure of car markets (Berry, 1994; Fershtman and Gandal, 1998; Verboven, 1996; Kessler et al., 2023)

(1)
$$\ln(S_{jt}/S_{0t}) = x_{jt}\beta - \alpha p_{jt} + \sigma \ln(\bar{S}_{j/gt}) + \xi_{jt}$$

(2)
$$\underbrace{p_{jt}}_{1+T_{jt}} = w_{jt}\gamma + \underbrace{\frac{(1-\sigma)}{\alpha(1+T_{jt})\left[1-\sigma \sum_{k \in f_{gt}} q_{kt}/Q_{gt} - (1-\sigma) \sum_{k \in f_{gt}} q_{kt}/M\right]}_{\text{costs}} + v_{jt},$$

 S_{it} share of car j in market M

 S_{0t} share of consumers choosing not to buy a new car x_{it} car characteristic

 w_{it} cost characteristic

 p_{jt} retail price of car j

 $\overline{S}_{j/gt}$ share of car j in category g T_{jt} tax rate of car j q_{kt}/Q_{gt} share of firm f in category g q_{kt}/M share of firm f in market M

GMM estimation

Variables	Demand Pricing		
Car size (engine size / car weight)	0.000918*** 40.51**		
	(0.000137)	(1.580)	
Automatic gear	0.702***	8,614***	
	(0.0714)	(562.0)	
Diesel	0.245***	4,757***	
	(0.0818)	(1,168)	
Four-wheel drive	0.0579	12,606***	
	(0.0942)	(1,193)	
Air bags	0.0831***	1,738***	
	(0.0176)	(256.4)	
Sunroof	0.263***	9,205***	
	(0.0717)	(804.9)	
Magnesium wheels	-0.238***	4,067***	
	(0.0382)	(426.7)	
Pollution level	-0.0176***		
	(0.00492)		
Exchange rate		-1.497***	
		(0.0977)	
Car category fixed effects	✓		
Year fixed effects		✓	
Alpha	1.91e-0	1.91e-05***	
	(2.86e	36e-06)	
Sigma	0.110	16**	
	(0.05	536)	
Constant	-8.278***	-51,363***	
	(0.344)	(5318)	
Observations	3,252		

Simulations procedure

- Solving a demand and pricing equations for each car model/year.
- Calculating emissions for each car model/year and their cost using average km traveled by each car model.
- Calculating emissions of the outside-option.

Manufacturers' average pollution score and markup feebate vs. fixed tax

Top 20 manufacturers, with more than 10K car units sold during the entire period (98% of market share).

Manufacturers' average pollution score and markup feebate vs. fixed tax

Top 20 manufacturers, with more than 10K car units sold during the entire period (98% of market share).

Manufacturers' average pollution score and markup feebate vs. fixed tax

Top 20 manufacturers, with more than 10K car units sold during the entire period (98% of market share).

Car model pollution score and manufacturers' average markup - feebate vs. fixed tax

Change in sales, average retail price, tax revenue, and manufacturer markup

Car category	∆ Sales	∆ Retail price	∆ Tax revenue	∆ Markup
Family	-0.39%	0.23%	-0.77%	0.71%
Mini	-2.89%	2.37%	-4.41%	5.94%
SUV	1.84%	-0.53%	4.18%	-3.83%
Executive	1.61%	-0.58%	3.08%	-3.35%
Minivan	0.83%	-0.10%	2.31%	-1.78%
Commercial	1.58%	-0.55%	3.43%	-3.19%
Sports	-0.29%	0.34%	-0.15%	0.54%
Luxury	-4.27%	0.67%	-8.70%	7.52%

Total emissions feebate vs. fixed tax

Average annual total	Feebate	Fixed tax	Λ (in $0/$)
emissions (tons)	(actual)	(simulated)	Δ (III %)
CO ₂	605,493.69	601,878.45	0.60%
NO _X	104.33	103.56	0.75%
THC	164.34	163.87	0.28%
CO	1,340.07	1,325.96	1.06%
PM	1.89	1.88	0.99%

Note. emissions of outside good are included.

Average emissions per kilometer feebate vs. fixed tax

X

Welfare effects (millions NIS) (2010-2018) feebate vs. fixed tax

	Feebate	Fixed tax		Λ in 9/-
	(actual)	(simulateu)		Δ III 70
Manufacturer surplus	46,657	46,429	228	0.49%
Consumer surplus	70,240	70,632	-391	-0.55%
Emissions cost (outside option included)	755	750	5	0.62%
Government revenue	88,855	88,948	-93	-0.1%

- ∖ The policy in Israel is similar to policies in other countries (US, France, Sweden, and Japan)
- \ The first one to include all 5 pollutants
- Because of the market power of car manufacturers they were able to react to the feebate
 - \setminus affected the success or failure of the feebate program
- \ The decrease in emission levels would likely have taken place regardless of the feebate policy,
 probably because of the evolution of technology and CAFE standards
- Information regarding the pollution level of the car affects demand above and beyond price

Policy implications

- \ Feebates may not be effective under imperfect competition
- \ Policymakers should consider other regulatory tools

Thank You.

Ofir Rubin

Ben-Gurion University of the Negev orubin@bgu.ac.il

Guilford Glazer Faculty of Business and Management Ben-Gurion University of the Negev Society בית הספר לקיימות ושינויי אקלים ע״ש גולדמן זוננפלד אוניברסיטת בן-גוריון בנגב

Goldman Sonnenfeldt School of Sustainability and Climate Change Ben-Gurion University of the Negev

