

HELMHOLTZ Centre for Environmental Research

Environmental trade-offs of (de)centralized renewable electricity systems

Felix Reutter^{a,b}, Paul Lehmann^{a,b}

^a Leipzig University, Institute for Infrastructure and Resources Management, Germany ^b Helmholtz Centre for Environmental Research – UFZ, Germany

IAEE Conference 2023 Milan, 2023-07-26

INTRODUCTION

- Electricity systems worldwide are transitioning to renewables for very good reasons
- However, also renewables can have various negative environmental impacts
- Shifting to renewable systems can therefore imply some environmental trade-offs
- Trade-offs may depend on the spatio-technical (de)centralization of the electricity system
 - spatio-technical (de)centralization: electricity can either be generated in a spatially concentrated manner and then be transmitted across the country, or in a more spatially distributed way
- There are degrees of freedom and choices to make on the way to fully renewable electricity systems in terms of their spatio-technical (de)centralization
 → in this context environmental trade-offs should be considered
- We propose a framework to analyze the potential environmental trade-offs that are related to different spatio-technical (de)centralization options for a fully renewable system and apply it to the case of Germany

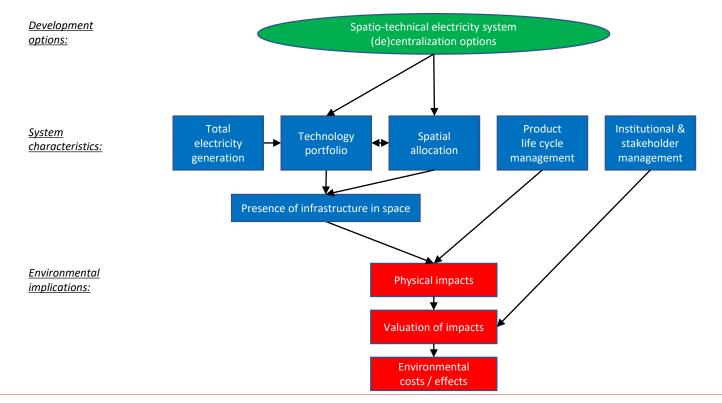
APPROACH

Review of *potential* **negative environmental impacts** of key technologies Analytical framework:

Factors determining *actual* environmental effects of (de)centralized renewable electricity systems

Application to the case Germany

• Derivation an analysis of 4 (de)centralization options from modeling studies


REVIEW OF POTENTIAL NEGATIVE ENVIRONMENTAL IMPACTS OF KEY TECHNOLOGIES ALONG THE LIFE CYCLE STAGES

Technology	Raw material sourcing & manufacturing	Installation & operation	Decommissioning & end-of-life		
PV & battery storage					
Onshore wind					
Offshore wind					
Grid					

- threats to birds and bats / marine wildlife
- disamenities for residents and visitors

ANALYTICAL FRAMEWORK

What determines environmental effects of (de)centralized renewable electricity systems?

THE CASE OF GERMANY: 4 (DE)CENTRALIZATION OPTIONS

Review of electricity system scenarios from 10 long-term modeling studies for Germany: **four basic spatio-technical (de)centralization options:**

- (1) "Offshore wind option": Offshore wind capacities are strongly expanded. Comparatively high concentration of generation capacities in the North Sea and Baltic Sea and the transmission to other parts of the country → spatio-technical centralization
- (2) **"Distributed onshore wind option**": Onshore wind capacities are not primarily concentrated at the windiest locations, but instead distributed more evenly in space → *spatio-technical decentralization*
- (3) "**PV option**": PV capacities are strongly expanded. More even spatial allocation of generation capacities compared to scenarios with lower PV capacities → *spatio-technical decentralization*
- (4) "**Import option**": Large amounts of electricity are imported from abroad and transmitted across the country instead of being generated and consumed domestically → *spatio-technical centralization*

THE CASE OF GERMANY: SYSTEM CHARACTERISTICS OF 4 (DE)CENTRALIZATION OPTIONS

(de)centralization option and corresponding study	Offshore wind (GW)	Onshore wind (GW)	PV (GW)	Imports (or export decline) (TWh)	Grid expansion (GW)	Battery capacities (GW or GWh)
Offshore wind option	ተተተተ	11111	↑↑↑↑ ↓	↓1↓	ተተዚ	↑ ↑↑↑
[84] Gils et al. (2019)	······ ↑	↓	1	↑↓	1↓	↓ ↓
[85] Kendziorski et al. (2022)	1	¥	\downarrow		\uparrow	¥
[88] Möst et al. (2021)	\uparrow	\downarrow	\downarrow			\downarrow
[90] Reiner Lemoine Institut (2013)	\uparrow	\downarrow	\downarrow		\uparrow	\downarrow
[91] Rogge et al. (2020)	\uparrow	\downarrow	\downarrow	\checkmark		
Distributed onshore wind option	$\rightarrow \rightarrow$	↑ ↑	→↑	→	$\checkmark \uparrow$	↓
[83] Fraunhofer ISI et al. (2017)			→	\downarrow		
[90] Reiner Lemoine Institut (2013)	\rightarrow	\uparrow	\uparrow		\checkmark	\downarrow
PV option	↓↓↓↓ → I→→	<u> </u>	ተተተተተ	↑↑↓	↓↓→	ተተተተተ
[82] Fraunhofer-ISE (2020)	↓	↓	↑	-	-	↑
[84] Gils et al. (2019)	l	↑	↑	\downarrow	\checkmark	Λ
[85] Kendziorski et al. (2021)	\checkmark	↑	↑		¥	Λ
[87] Luderer et al. (2021)	\rightarrow	\checkmark	↑			
[88] Möst et al. (2021)	\checkmark	\uparrow	\uparrow			\uparrow
[89] Öko-Institut & Prognos (2019)	\rightarrow	\checkmark	↑	\uparrow	\rightarrow	↑
[91] Rogge et al. (2020)	\checkmark	\uparrow	\uparrow	\uparrow		
Import option	→ →1	↓ti	↓ ↓	<u></u>	↑ ↑	t i
[84] Gils et al. (2019)	1←	t↓	\downarrow	\uparrow	↑	î↓
[86] Kost et al. (2019)	\rightarrow	\downarrow	\downarrow	\uparrow	\uparrow	

- Marginal technology portfolio differences of the considered (de)centralization options
- Information on spatial allocations of technologies

\uparrow	Higher compared to (all) alternative scenario(s)
\downarrow	Lower compared to (all) alternative scenario(s)
t↓	Higher compared to one scenario but lower compared to another scenario
\rightarrow	Same as in (all) alternative scenario(s)
1	Same as in one alternative scenario but higher than in another alternative scenario
→ l	Same as in one alternative scenario but lower than in another alternative scenario
	No values

THE CASE OF GERMANY: ENV. TRADE-OFFS OF THE 4 (DE)CENTRALIZATION OPTIONS

Raw material sourcing	Installation	Decommissioning	
& manufacturing	& operation	& end-of-life	
due to relatively low potential impacts	due to relatively high potential impacts	due to relatively low potential impacts	
related to PV and batteries	from offshore wind and grid infrastructure	related to PV and batteries	
	 due to relatively low potential impacts from onshore wind 		
	due to relatively high potential impacts from onshore wind in total and regionally		
	in the windless South of Germany ▲ due to relatively low potential impacts from grid infrastructure and regionally due to relatively low potential impacts from onshore wind in the windy North of		
	Germany		
due to relatively high potential impacts related to PV and batteries	 due to relatively low (or at least not high) potential impacts from grid infrastructure and offshore wind 	due to relatively high potential impacts related to PV and batteries	
due to relatively low potential impacts associated with domestic PV generation	 due to relatively high potential impacts from grid infrastructure due to possibly relatively low potential impacts from onshore wind 	due to relatively low potential impacts associated with domestic PV generation	
	 & manufacturing due to relatively low potential impacts related to PV and batteries due to relatively high potential impacts related to PV and batteries 	& manufacturing & operation due to relatively low potential impacts related to PV and batteries due to relatively high potential impacts from offshore wind and grid infrastructure due to relatively high potential impacts from onshore wind due to relatively high potential impacts from onshore wind due to relatively high potential impacts from onshore wind in total and regionally in the windless South of Germany due to relatively low potential impacts from grid infrastructure and regionally due to relatively low potential impacts from grid infrastructure and regionally due to relatively low potential impacts from onshore wind in the windy North of Germany due to relatively high potential impacts from grid infrastructure and offshore wind due to relatively low (or at least not high) potential impacts from grid infrastructure and offshore wind due to relatively low potential impacts related to PV and batteries due to relatively high potential impacts from grid infrastructure and offshore wind due to relatively high potential impacts from grid infrastructure due to possibly relatively low potential impacts 	

FINDINGS AND CONCLUSION

- all (de)centralization options entail potential environmental trade-offs
- (de)centralization is a relevant factor determining some of the trade-offs
 - For instance, both centralization options have lower environmental impacts related to PV, whereas both decentralization options have lower impacts related to the grid
- trade-offs also depend on how spatio-technical (de)centralization is achieved
 - For instance, only one of the two decentralization options considered show a trade-off between env. impacts related to battery storage and offshore wind power
- actual environmental trade-offs of renewable electricity systems depend also on other aspects than their spatio-technical (de)centralization
- policy-makers should consider env. trade-offs, but also many other energy policy goals (further goals include, e.g., system costs, security of supply, and equity considerations)

UNIVERSITÄT LEIPZIG

THANK YOU FOR YOUR ATTENTION!

Dr. Felix Reutter

Leipzig University Institute for Infrastructure and Resource Management Ritterstr. 12, 04109 Leipzig, Germany

felix.reutter@uni-leipzig.de https://www.wifa.uni-leipzig.de/en

DECISION-MAKING IN THE LIGHT OF ENVIRONMENTAL TRADE-OFFS

Valuation of potential environmental impacts	"Offshore wind"	"Distributed onshore wind"	"PV"	"Import"
If potential impacts from PV system production and end-of-life are an important public concern	pro		con	pro
If potential impacts from battery production and end-of-life are an important public concern	pro	-	con	-
If potential maritime impacts are an important public concern	con	-	pro	-
If potential impacts from grid infrastructure are an important public concern	con	pro	pro	con
If total amount of potential impacts from onshore wind is an important public concern	pro	con	-	pro
If a spatially uneven distribution of potential impacts from onshore wind is an important public concern	-	pro	-	-
If potential impacts from generation abroad are an important public concern	-	-	-	con

"-" no relevance or ambiguous relationship according to studied literature

Publication	Scenario in Publication	Associated option in present study	Wind Offshore (GW	/) Wind Onshore (GW	/) PV (GW)	Import (TWh)	Grid Expansion	Battery Capacities
Fraunhofer ISE (2020)	Reference	[Reference case]	75	189	415	NV	NV	153 GWh
	Unacceptance	PV	40	77,5	646	NV	NV	396 GWh
Fraunhofer ISI et al. (2017)	Base Scenario	[Reference case]	15	75,4	69,3	105	36,5 GW	NV
	Regional Scenario	Distributed onshore wind	15	81,6	69,3	106	33,8 GW	NV
Gils et al. (2019)	Offshore	Offshore wind	45	105	185	73	58 GW	0 GW
	Decentralized	PV	29	129	283	37	0 GW	up to 298 GW
	Import	Import	29	117	161	107	130 GW	up to 104 GW
Kendziorski et al. (2022)	Centralized	Offshore wind	~50	~200	~255	NV	+15% (vs. decentralized)	~15 GW
	Decentralized	PV	~15	~215	~330	nv	see above	~30 GW
Kost et al. (2019)	Reference	[Reference case]	~30	~215	~255	~10	15 GW interconnect. to neighb. 30 GW interconnect. to	NV
	Import	Import	~30	~200	~235	~80	neighb.	NV
Luderer et al. (2021)	Focus PV	PV	40	130	400	NV	NV	NV
	Focus Wind	[Reference case]	40	180	200	NV	NV	NV
Möst et al. (2021)	Centralized	Offshore wind	27	76,3	32,2	NV	NV	~120 GW (in Europe
	Decentralized	PV	16,5	82,1	74,6	NV	NV	~350 GW (in Europe
Öko-Institut & Prognos (2019)	Reference	[Reference case]	51	178	154	-97	NV	94 GWh
	Focus Solar	PV	51	115	313	-92	NV	190 GWh
Reiner Lemoine Institut (2013)	Centralized	[Reference case]	10	148	139,5	NV	21,5 GW	25,4 GWh
	Offshore	Offshore wind	30	113	123,5	NV	44,3 GW	22,4 GWh
	Decentralized	Distributed onshore wind	10	151	141,5	NV	17,8 GW	24,4 GWh
Rogge et al. (2020)	Pathway A	Offshore wind	~50	~20	~1	~125	NV	NV
	Pathway B	PV	~5	~50	~70	~220	NV	NV