

Hydrogen storage for a net-zero carbon future

IAEE European Conference

26 July 2023

Alex Patonia and Rahmat Poudineh

OIES ENERGY TRANSITION DAY

• Possibility of imbalance between production and consumption of H2

- Intermittent' green hydrogen and 'non-intermittent' blue hydrogen production
- Hydrogen demand potentially non-responsive to supply
- H2 storage can support decarbonisation of the energy system via integration of variable renewables

But hydrogen storage is challenging

4 kg of pure hydrogen in different storage options

Source: Edwards, Kuznetsov, and David (2007)

Key characteristics of some major hydrogen storage options

ate	Storage forms		Chemical Molar mass formula/ (g/mol) example		Gravi- metric energy	Volumetric H₂ density (kg/m³)	Gravi- metric H₂ density	Typical conditions for H ₂ (ad-/ physi-) sorption/ hydrogenation/ production			Typical conditions for storage			Typical conditions for H₂ desorption/ de-hydrogenation/ release				
5	5					(MJ/kg)		(WL76)	Tempe- rapture (°C)	Pressure (bar)	Energy (kJ/mol)	Tempe- rature (°C)	Pressure (bar)	Energy (kJ/mol per day) ¹⁰	Tempe- rature (°C)	Pressure (bar)	Energy (kJ/mol)	
	Comp	npressed hydrogen (700 bar)		H ₂	2.016	120-142	42	100	Ambient**	700**	~9.798**	Ambient	700	<10			n/a	
Gas	hydro-	Compromethar (250 ba	essed synthetic ne/ natural gas (SNG) ar)	CH₄	16.043	53.6-55.6	~32.2	~25.13	250-350*	30-40* 250**	~206* >1.8**		200-250	>1.9	700-1000	3-25	~165	
	e o ti	Liquefied SNG		1			~101.78			>68	~19.008***	~-161	0.3-16	19.06-34.7				
	carbe	Synthe	tic gasoline (petrol)	C ₈ H ₁₈	60-150	44-46.4	~119.8	16	400-500	>200	48.5-61*	Ambient	Ambient	n/a	>500	1-4	<40	
	ŝ	Synthe	tic diesel	C ₁₂ H ₂₃	198-202	45.4-45.6	~119.1	14	700-1500	200-700	~80*				~800		48.5-61	
Liquid	Liquid hydrogen			H2	2.016	120-142	~70.8	100	-252.8	Ambient	>25.66***	-252.8		>28.3			n/a	
	8 8	Liquid ammonia		NH3	17.031	21.18- 22.5	107.7-120	17.65	300-500	140-250	~92.4* ~0.9***	-33		~1	350-900	1-10	30.6-46	
	i i ji ji	Methanol (MeOH)		CH ₃ OH	32.04	20.1-22.4	95.04-99	12.1	200-300	10-70	>41.2*	Ambient]	n/a	250-900	25-50	>70	
	₹ĕ	Formic acid		CH ₂ O ₂	46.03	~4.58	~53	4.3	90-140	6-10	~34.7*				150-225	~Ambient	~29.81	
		Isopropanol (i-PrOH)		C ₃ H ₈ O	60.1	~34.1	~25.9	3.3	20-65	60-200	40-48*				70-195	0.5-1.5	~61.4	
	ganic carriers	Toluene/ Methylcyclohexane (MCH)		C ₇ H ₈ / C ₇ H ₁₄	98.186	~7.35	47.1-47.4	6.16	>350	Ambient	10.5-18.4***				~350	1-9	~68	
		Naphtalene/ decalin		C10H8/C10H18	138.25	~42.97	~65.4	7.29	~280	>100	~16.3***				~240	~35	63.9-68.3	
	id or gen (Benzene/ cyclohexane		C ₆ H ₆ /C ₆ H ₁₂	84.16	~3.9	~55.9	7.20	70-150	<20	~119.5***				~400	1-8	89-138	
	hydro	Dibenz perhyd (PDBT)	yltoluene (DBT)/ Iro-dibenzyltoluene	C ₂₁ H ₂₀ / C ₂₁ H ₃₃	290.54	~12.9	~64	6.20	>150	15-50	~171***				300-390	<4	~65.4	
Solid		ental Ital ides	Magnesium hydride	MgH ₂	26.32	9-10.8	86-109	6-7.6	260-425	30-300	~70.6***		Ambient- 40	n/a-0.6	250-400	~Ambient	74.7-118	
	8	Elem me hydr	Aluminium hydride	AlH₃	29.99	>36.68	~148	~10.1	~600	1-350	~104***				85-140	75-135	~20	
	i,	sc.	AB₅-type	LaNi₅/ LaNi₅H₅	432/438.4	40-60	~105	1-1.5	20-80	1.5-2.5	12.27-40***				~Ambient	1.6	~54.3	
	al hy	Inter- etall	AB ₂ -type	ZrMn ₂ / ZrMn ₂ H	201/202.1		~100	2.15-3.8	20-50	30-60	>20***				Ambient- 200	1-250	>29.9	
	letter le	_ E E	AB-type	TiFe/ TiFeH	104/104.7		~90	<5.4	300-400	10-65	10-28.1***				Ambient-40	1-25	10-28	
	-	al	Alanates	NaAlH₄	54	~65	~54	3.5-5.4	~100	6-12	57.4-118***				85-260	6-66	79-92	
		di la la	Borohydrides	LiBH₄	21.78		~121	~18.5	600-700	100-200	56.37-88***				300-450	>3	30-59	
	·	<u>ठ</u> _5	Amides	LiNH ₂	22.96		<54	4.5-5.2	~150	>20	~55.2***				285-500	~Ambient	40.4-73.6	
	als		Carbon fibres	C _n (C ₃ H ₃ N) _n	12.01	0.8-2	~18	<5.44	~-196-	1-40	6-11***	~-196-	<250	4.4-12	160-500		56.5-238	
		Sec	Carbon nanotubes		(carbon)			5-10	ampient			ampient			135-325			
	i i i i i i i i i i i i i i i i i i i	-pa	Activated carbon	CH ₂ O ₂		~0.0655	16.7	0.1-7.5					<59					
	nat	8	Graphene	C ₇₀ H ₃₀		~0.9	16-17	1-7.7					<100					
	us r	Carb	Carbon aerogel	V ₂ O ₂ •nH ₂ O		0.014-		<4.8					<65					
1	ŏ	-	Templated carbon	C45H6O2		~0.3	<17	5.5-7.3					100-340					
	•	Metal-o (MOFs)	organic frameworks)	Cr ₃ F(H ₂ O) ₂ O(BD C) ₃	~709.4	~0.57	~11.5	<10		~100	~51.2***		15-80		60-85	ې م	~78.7	

OIES ENERGY TRANSITION DAY

Other factors to consider

- 1. Available storage volume (small/medium/large)
- 2. Speed of injection to/ withdrawal from storage vessel
- 3. Speed for dehydrogenation/desorption

- 4. Need for carbon management
- 5. TRL/MRL/CRL
- 6. Development level of storage infrastructure
- 7. Corrosiveness/ toxicity/ flammability

Key risk and uncertainties and the task of business model

- Two primary risks:
 - Demand for hydrogen storage capacity
 - Price of utilising hydrogen storage capacity

Revenue Uncertainty

- What is a viable business model?
 - A viable business model is the one that is deigned to overcome the key risks to enable investment. In
 practice this means allocating risk between government and the private party efficiently.
- Policy and commercial interventions are required to achieve this.

Market-based model	 Market participants make investment in anticipation of profit and without a government support
Regulated Revenue model	 Contract-based models (fixed price or premium) Economic regulation (fully regulated, cap and floor) Obligation-based approach Incentive to end users
Centrally coordinated model	 Government makes direct investment in the hydrogen storage Public private partnership Government as the off-taker of last resort

Search Challenges of designing a government-supported business model

- How much storage capacity is needed?
- Where storage infrastructure needs to be built?
- Governance issues: who should own/operate hydrogen storage?
- How to ensure the party receives subsidies makes efficient investment decision?
- What role competition plays in delivering the business model?
- How to ensure storage infrastructure is used in practice? (and not just built)
- How to recover costs of subsidies for hydrogen storage?
- Should the business model only focus on risk mitigation to enable investment or it should also include additional features?
- What is the exit strategy for subsidy support (if there is any)?

Thank you for your attention!

rahmat.poudineh@oxfordenergy.org