

26.07.2023 IAEE 2023, Milano

Heidi Hottenroth, Ingela Tietze, Tobias Viere Pforzheim University, Germany Multi-Objective Investment Optimization of Energy Systems for Residential Quarters Considering Costs and Lifecycle Environmental Impacts

Agenda

- Energy system model LAEND
- Case study
- Conclusions and outlook

Aim of Energy system model LAEND

Decision support concerning the configuration of an integrated energy system that compensates for costs and environmental impacts

- Prevention of burden shifting, which occurs in single objective optimization
- System boundary: communities, quarters or neighborhoods
- Transformation of energy system over time: investment planning

→ LAEND = Life-cycle Assessment based Energy Decision support

Life Cycle Assessment (LCA)

• Aggregation of environmental impacts over the whole life-cycle of a product

Environmental Indicators/Possible optimization objectives

Single objective							
Climate change	Ozone layer depletion	Acidification	Minerals and metals				
	Carcinogenic effects	Terrestrial eutrophication	Fossils				
	Non-carcinogenic effects	Freshwater eutrophication	Dissipated water				
	Respiratory effects, inorganics	Marine eutrophication	Land use				
	Ionizing radiation	Eco toxicity					
	Photochemical ozone creation						
Costs							
Multi criteria objective (weighted sum)							
EU Environmental Footprint v2 (Normalization and weighting of single indicators)							
EU Environmental Footprint + costs (case study: 70:30)							
Equilibrium (equal weighting of all env. indicators and costs)							

Methods Coupling in LAEND: Energy system optimization + LCA

hourly resolution within years

Application of myopic optimization

- First year of a time period (here 5 years) is optimized
- Results are transferred to next period
- Impacts per year are aggregated for full period

Time horizon

Case Study

Case Study

- Inner-city quarter in Constance (city in South-Western Germany)
- Newly built multiple-family dwellings
- Electricity demand approximation:
 ≈ 500 MWh/a
 - + Charging stations: 50 in 2023 and 500 in 2038

Heidi Hottenroth

- Heat demand:
 - ≈ 1000 MWh/a (space heat + hot water)
- Time horizon: 20 years

Model structure/technologies and parameters used

Costs over 20 years per objective

 High investments if environmental and climate impacts are minimized; mainly due to batteries and PV

26.07.2023

heat storage, hot water heat storage, heating solar thermal FPC, heating boiler, biomethane heating unit, hot water heat pump a/w, hot water heat pump a/w, heating heat pump ww/w, hot water heat pump ww/w, heating heat exchanger, ww heat pump b/w, hot water heat pump b/w, heating geothermal probe Li-lon battery PV facade PV flat roof % biomethane ⊠ grid FPC = flat plate collector a = air w = water ww = wastewater

Impacts over 20 years per objective

- Minimal climate impacts, high costs and vice versa
- Minimal climate impacts, high overall env. impacts (due to infrastructure)
- Compromise solutions
 exists

Conclusions and Outlook

Conclusions and Outlook

- System configuration differs for different objectives
- Single-objective optimization leads to burden shifting
- Compromise solutions exist which prevent from burden shifting from one impact to another
- Minimizing costs and climate impacts are opposing objectives
- Including environmental and climate objectives leads to higher costs but prevention costs are internalized
- Aiming at sustainability also other indicators like security of supply, employment effects, etc. should be taken into account

gefördert durch

Deutsche Bundesstiftung Umwelt

www.dbu.de

Thanks for your attention

Institute for Industrial Ecology Pforzheim University, Germany heidi.hottenroth@hs-pforzheim.de https://github.com/inecmod/LAEND_v031

Literature and Links

- Tietze, I.; Lazar, L.; Hottenroth, H.; Lewerenz, S. (2020) LAEND: A model for multi-objective investment optimisation of residential quarters considering costs and environmental impacts. *Energies*, Band 13, Heft 3, S. 614. doi: <u>10.3390/en13030614</u>
- <u>https://www.hs-pforzheim.de/forschung/institute/inec/sonstiges/laend</u>
- Documentation und Programme code LAEND v0.3.1
 <u>https://github.com/inecmod/LAEND_v031</u>
- European Commission (2019): European Platform on Life Cycle Assessment; EF reference package 2.0 (pilot phase). https://eplca.jrc.ec.europa.eu/permalink/EF_2.0_Complete.zip. Zugegriffen: 07. Juni 2021.

Methodological Approach of Energy System Model

Input data

- Demand
- Weather data
- Technical parameters
- Costs
- Life-cycle impact assessment data

LAEND

Life-cycle Assessment based ENergy Decision support tool

Multi-criteria multi-period investment and dispatch optimization including cost and environmental criteria

Results

Optimal investment and dispatch planning

Environmental impacts of planning alternatives

Environmental impacts

- Use of LCIA data in analogy to costs on a yearly basis but without discount rate
 - for plant infrastructure (invest) per kW/kWh (storages)
 - for variable environmental impacts per kWh
 - for commodities/grid electricity per kWh
- LCIA calculation in openLCA is initiated by LAEND, saved as xlsx file and read

Normalization and Weighting Factors for multi-criteria Optimization

Equilibrium

HS PF

INSTITUTE FOR INDUSTRIAL ECOLOGY

Indicator	Normalization World 2010		Weighting factors Env. Footprint (EF)
Indicator Climate change Acidification Ecotoxicity Freshwater eutrophication Marine eutrophication Terrestrial eutrophication Carcinogenic effects Ionising radiation	World 2010 8.94E+13 4.93E+11 2.66E+13 1.59E+10 1.99E+11 1.57E+12 8.67E+04 2.63E+13	kg CO ₂ -Äq mol H⁺-Äq CTUe kg P-Äq kg N-Äq mol N-Äq CTUh kBq U-235-Äq	
Non-carcinogenic effects Ozone layer depletion Photochemical ozone creation Respiratory effects, inorganics Dissipated water Fossils Land use Minerals and metals <i>Costs</i>	1.07E+06 1.86E+08 2.85E+11 7.34E+06 7.14E+13 5.19E+14 8.31E+15 4.60E+08 4.63E+13	CTUh kg CFC-11-Äq kg NMVOC-Äq Krankheitsfälle m³ Wasser-Äq MJ Punkte kg Sb-Äq € ₂₀₁₈	EF + Kosten

Environmental Footprint v2.0 according to European Commission 2019

Objective function

• graph structure: start nodes and end nodes connected by directed edges

$$\min \sum_{t \in T} \sum_{(s,e) \in E} vari_{(s,e)} f_{(s,e)}(t) \cdot \tau$$
$$+ \sum_{(s,e) \in E} epi_{(s,e)} x_{(s,e)}$$
$$+ \sum_{n \in N} epi_{(n)} y_{(n)}$$

- *vari= variable impacts epi* = *equivalent periodical impacts f* = *flow between nodes x* = *power invest y* = *energy invest* s = start node e = end node E = edgen = nodeN = nodes $\tau = time increment$ *t* = *timestep* T = time period
- Minimizing costs and environmental impacts as weighted sum

Multi criteria aggregation

$$vari = \frac{varm}{n_m} w_m + \left(\sum_i \frac{vare_i}{n_i} w_i\right) w_e$$
$$epi = \frac{epm}{n_m} w_m + \left(\sum_i \frac{epe_i}{n_i} w_i\right) w_e$$

	W _m	We	Wi
Single criteria			
costs	1	0	0
Env. Impact i	0	1	1
Multi criteria			
Env. Footprint (EF)	0	1	$\sum_i w_i = 1^*$
EF + costs	w _m (e.g. 0.5)	1-w _m	$\sum_i w_i = 1^*$
Equilibrium	1/17	16/17	1/16

$$\sum_{i} w_{i} = 1, \qquad w_{m} + w_{e} = 1$$

$$epm = c_{om} + annuity, epe = \frac{e}{lifetime}$$

vari = variable impacts varm = variable impact, monetary vare = variable environmental impact n = normalization value w = weight m = monetary e = environmental i = single environmental impact epi = equivalent periodical impacts epm = equivalent periodical impacts, monetary $c_{om} = costs$, operation and maintenance epe = equivalent periodical env. impacte = environmental impact per unit

22

* According to European Commission 2019

Results: installed capacities per objective

Heidi Hottenroth

• Ergebnis-Diagramme

