

Friedrich-Alexander-Universität Fachbereich Wirtschafts- und Sozialwissenschaften | WiSo

The Industry Transformation from Fossil Fuels to Hydrogen will reorganize Value Chains: Big Picture and Case Studies for Germany

Jonas Egerer, Nima Farhang-Damghani, Veronika Grimm and Philipp Runge

Chair of Economic Theory, Friedrich-Alexander-University Erlangen-Nürnberg (FAU)

IAEE Milano – 26.07.2023

Motivation: 1) What role can hydrogen play in the decarbonization of the German industry?

Assumption that current production remains in Germany:

- Demand as **feedstock** for chemical and metal industry (H-atoms)
- Demand for high temperature heat and steam in mineral and paper industry (fuel without C-atoms)
- <u>Not</u> topic of paper: Fossil fuel/feedstock conversion (refineries / coke ovens), i.e., future source of C-atoms?

Motivation: 1) What role can hydrogen play in the decarbonization of the German industry?

Today's (fossil) hydrogen demand in Germany in [TWh/year]

Ammonia	19.4 TWh
Refineries	22.4 TWh
Methanol	9.5 TWh
Total	55 TWh

Mainly produced onsite (steam reforming of natural gas) and in refineries as by-product

- > Potential to replace hydrogen produced from fossil sources
- Demand as feedstock and energy carrier increases if industrial value chains switch to carbon-neutral production
- Annual demand of ~100 TWh in 2030 (NHS)
- > What is the future demand for hydrogen in industry?

Motivation: 2) Case study on value chains of downstream products

Focus on:

- Steel by H2-DRI
- Urea by Ammonia
- Ethylene by Methanol

1) Hydrogen in the German industry: **Approach – Demand calculation**

Further underlying assumptions:

- Production data of 2021 stays constant in the future
- No specific reference year for climate-neutrality

1) Hydrogen in the German industry: **Approach – Scenarios**

Assumptions on hydrogen shares:

- Lower and higher scenario for hydrogen utilization in each process
- Lowest and highest hydrogen utilization share considered after careful literature review for different possible fuel and technology shares for each analyzed production process

Sector	# of plants	Low H ₂ share, %	High H ₂ share, %	
Crude steel	8	40.6	59.0	Recycling quota
Ammonia	5	100.0	100.0	No alternative
Methanol	10	60.0	85.0	Bio-MeOH, FTS
Cement clinker	33	20.0	30.8	Ideal vs. fossil sub
Lime	57	20.0	100.0	Cf. cement, no bio
Glass	75	20.0	100.0	Low ideal vs High
Paper	141	0.0	71.5	None vs. Replace fossil

1) Hydrogen in the German industry: Resulting hydrogen demand and distribution, in [TWh/year]

Chair of Economic Theory; Nima Farhang-Damghani

2) Case study on value chains: Cost perspective for the transformation of value chains

Model

Optimization model:

Obj: Minimize total costs of each value chain incl. transport (green hydrogen, intermediate or final products)

Objective Function

 $\min c = c^{RE} + c^{RG} + c^{E} + c^{C1} + c^{C2} + c^{T}$

Parameters

CAPEX/OPEX, Renewable energy vectors, storage, transport distance, raw materials, ...

Decision Variables

Levelized Costs of final product in €/t Capacities of conversion and production plants

9

2) Case study on value chains: Steel, Ethylene, and Urea

Different levels of relocation from Germany to "excellent site":

- Full domestic production in Germany
- Relocation of hydrogen production + import
- Relocation including first intermediate product + import
- Complete relocation of value chain + import

2) Case study on value chains: Steel

Ę

- Hydrogen has a rather small share of 11-19% of the total levelized costs of steel
- Relocation may be less a matter of cost but more of location advantages such as workforce and customer proximity
- Overall small cost advantages when steel value chain is relocated to favorable sites

2) Case study on value chains: Ethylene

- Levelized costs are second-highest when the entire process chain takes place in Germany.
- Transport of methanol or ethylene over long distances is much easier and cheaper than the transport of elemental hydrogen
- Relocation of further process steps including hydrogen production is significantly cheaper than domestic production

2) Case study on value chains: Urea

- Levelized costs are second-highest when the entire process chain takes place in Germany.
- Transport of ammonia or urea over long distances is much easier and cheaper than the transport of elemental hydrogen
- Relocation of further process steps including hydrogen production is significantly cheaper than domestic production

Take-aways for the transformation of global and German industrial value chains?

- Industrial hydrogen demand for status-quo in Germany will rise significantly (domestic production?), but:
 - Uncertainty on demand for specific products with changes in relative prices
 - Relocation of processes to sites with better access to H- (and C-) Atoms possible
- Potential for relocation ("green leakage"):
 - + Differences in regional hydrogen prices for products with high hydrogen cost share (NH₃, MeOH)
 - + Defossilization requires new processes with large investments (H-DR)
 - Integration of value chains (chemical industry?)
- Possibly results in increasing global trade of intermediate products (e.g. ammonia, olefins, MeOH)
- Perspective for Germany and the EU
 - Which are the important processes in value chains for value creation
 - Industrial policy in terms of future chances instead of protection of current system

Friedrich-Alexander-Universität Fachbereich Wirtschafts- und Sozialwissenschaften | WiSo

Thank you for your attention!

Nima Farhang-Damghani – nima.farhang-damghani@fau.de

Chair of Economic Theory, FAU Erlangen-Nürnberg

2) Case study on value chains: Assumptions on input data

	Unit	Benchmark	Min	Max	Source	Ammonia production					
Finance						Haber-Bosch CAPEX	$\left[\frac{\epsilon}{kW_{H_2}} \right]$	510	459	561	29
Interest rate	[%]	7	4	10		Air separation unit CAPEX	$[E/kW_{H_2}]$	197	177	217	80
PV	1.4					OPEX	$\begin{bmatrix} a \end{bmatrix}$	30	30	30	86
CAPEX	$[\in/kW]$	336	246	432	[69]	Hydrogen demand (stoichiometric)	$\frac{1}{1}$	0 178	0 178	0 178	lool
Depreciation period	a	30	30	30	691	Hydrogen demand (incl. efficiency)	t_{H_2}/t_{NH_3}	0.197	0.197	0.197	[74]
OPEX	[%/a]	1.3	1.3	1.3	69	Electricity demand	$[MWh/t_NH_0]$	0.64	0.64	0.64	74
Full load hours at excellent site ³	[h/a]	1.166	1.574	2.067	[56, 64]	Urea production	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Full load hours in Germany	h/a	1,307	1,307	1,307	[56]	CAPEX	$[\in/kW_{NH_3}]$	65	59	72	[86]
Wind	[107 00]	1,001	1,001	1,001	[00]	Depreciation period	[a]	20	20	20	[86]
CAPEX	$[\in /kW]$	1 143	938	1 213	[69]	OPEX	[%/a]	2	2	2	86
Depreciation period		20	20	20	601	Electricity demand	$[MWh/t_{Urea}]$	0.64	0.64	0.64	86
OPEX	[%]/a]	11	11	11	601	CO ₂ demand	$[t_{CO_2}/t_{Urea}]$	0.73	0.73	0.73	86
Full load hours at excellent site ³	[70/ a]	5.056	2 697	6 126	[64 71]	NH ₃ demand	$[t_{NH_3}/t_{Urea}]$	0.57	0.57	0.57	[86]
Full load hours in Cormony	[h/a]	2,030	3,007	2 040	[04, 71]	Methanol production		100		110	110 04
Put load hours in Germany	[n/a]	2,949	2,949	2,949	[11]	CAPEX	$[\epsilon/kW_{H_2}]$	100	90	110	[13, 64]
CADEX	(e/L)[[]]	105	105	105	[10]	OPEX	$\begin{bmatrix} a \end{bmatrix}$	20	20	20	[13]
CAPEX	[e/kwn]	125	125	125	18	Electricity demand	[MWb/t]	0.30	0.30	0.30	74
Depreciation period		20	20	20	[18]	Hydrogen demand (stoichiometric)	$[t_{H_2}/t_{H_2}]$	0.1887	0.1887	0.1887	[1.4]
OPEX	[%/a]	3	3	3	18	Hydrogen demand (incl. efficiency)	tu /tm oul	0.2097	0.2097	0.2097	[74]
Efficiency	[%]	94	94	94	[18]	CO ₂ demand (stoichiometric)	Itcos /tmson	0.1373	0.1373	0.1373	11
Electrolysis	10 (1 11)	150	100			Ethylene production	1002/ 140011				
CAPEX	$[\in/kW]$	450	400	500	44	CAPEX	$[\in/t_{Ethulene}]$	191	172	210	[67]
Depreciation period		10	10	10	44	Depreciation period		20	20	20	67
OPEX	[%/a]	3	3	3	44	OPEX	[%/a]	3	3	3	[67]
Efficiency	$\%_{LHV}$	72	72	72	44	Electricity demand	$[MWh/t_{Ethylene}]$	0.04	0.04	0.04	67
CGH2 Storage						Methanol demand	$t_{MeOH}/t_{Ethylene}$	2.28	2.28	2.28	6
CAPEX	$[\in/kWh]$	135	135	135	[30]	Direct reduction of iron					
OPEX	[%/a]	1	1	1	[30]	CAPEX	$[\epsilon/t_{DRI}/a]$	240	216	264	47
Transport						Depreciation period		20	20	20	47
Distance ³	km	10,500	5,400	13,500		UPEX Underson demond		0.0506	0.0506	0.0506	[47]
Cost for steel transport	$\left \epsilon / (t \cdot km) \right $	0.00093	0.00093	0.00093	64, 80	Cost for iron ore	$[t_{H_2}/t_{Steel}]$	190	170	0.0590	[0]
Cost for liquid hydrogen transport	$\left \epsilon / (t \cdot km) \right $	0.0800	0.0800	0.0800	[64]	Cost for iron pellets	$[\mathbf{C}/\mathbf{cSteel}]$	84	75.6	92.4	[45]
Cost for methanol transport	$ \in /(t \cdot km) $	0.0023	0.0023	0.0023	64	Electric arc furnace	[~/ *Steel]	04	10.0	04.1	
Cost for ethylene transport	$\left \in /(t \cdot km) \right $	0.0034	0.0034	0.0034	29	CAPEX	$\left[\in /t_{Steel} / a \right]$	184	166	202	[47]
Cost for ammonia transport	$(\epsilon/(t \cdot km))$	0.0034	0.0034	0.0034	29	Depreciation period	[a]	20	20	20	[47]
Cost for urea transport	$\epsilon/(t \cdot km)$	0.00093	0.00093	0.00093	64, 80	Electricity demand	$[MWh/t_{Steel}]$	0.64	0.52	0.76	[47]
•											

Chair of Economic Theory; Nima Farhang-Damghani

Cost perspective for industrial value chains

- Three excellent locations with favourable renewable energies conditions (Runge et.al. 2019)
 - Patagonia (optimistic), Canada (neutral), Namibia (pessimistic)
- Comparison to production in Germany
- Further scenario with only import of liquefied hydrogen
- Further scenarios with import of intermediate products (ammonia, methanol, DRI)

Backup

Hurdle: No production or plant capacity data available

Approximation: Emission share per plant from EU ETS = Production share per plant

• Production output plant X = Total production of sector Y * emission share plant X

Backup

Methanol derivatives	$\mathbf{Low} \ \mathbf{H}_2$	$\mathbf{High} \; \mathbf{H}_2$
Methanol	60	85
Olefins (Ethylene, Propylene)	100	85
BTX (Benzene, Toluene, Xylene)	100	100
Source	[26]	[6]
Total methanol demand	32.2 Mt	29.2 Mt
Methanol-by- H_2/CO_2 amount	19.3 Mt	24.9 Mt

TABLE 4. Assumptions for calculations on lower and higher MtO/MtA production share for each process (in %)

Backup

2021 energy demand

2021 emissions

Friedrich-Alexander-Universität Fachbereich Wirtschafts- und Sozialwissenschaften | WiSo

Resulting hydrogen demand and distribution

 Δ between higher and lower H₂ demand scenarios