International Association for **ENERGY ECONOMICS**

IAEE

ecoesione

Coesione Sociale nella Transizione Ecologica

Clean energy technologies and critical raw materials

18th IAEE European Conference

July 26, 2023 - Milan

Simone D'Alessandro University of Pisa

A narrow window

- European Green Deal requires an enourmous effort in decarbonization patways through electrification, energy efficiency and radical transformation of the production structure
- European institutions share the vision that our economic and social prosperity cannot be achieved without promoting industry
- How to increase competitiveness, jobs and social cohesion without compromising the ecological transition is a major challenge for Europe
- The 2021 Strategic Foresight Report (EC, 2021) forecasts an unprecedented increase in demand for the key materials necessary to a successful twin transition
- The analysis also reveals the EU's heavy dependence on a very limited number of suppliers for all the strategic technologies in several stages of their supply chains
- On the top of this, the twin transition will produce a large redistribution in the labour market with the necessity to reskill the workers and renew education programmes

Physical and social barriers to the twin transition

- Energy efficiency
- Digitalization
- Electrification

- Job redistribution
- Critical raw materials availability
- Social coehsion

- Social unrest
- Behavioral lock-in
- Geopolitical fragmentation

The mineral intensity of green innovation

Green technologies carry intensive mineral demands (more than fossil fuel counterparts

- Batteries powering electric vehicles is forecasted to drive up demand for lithium 11 times by 2030 and 17 times by 2050
- Electric car requires **x6 times** the mineral inputs of a conventional car
- Onshore wind plant requires x9 times more mineral resources than a gas-fired power plant

The increase of primary and secondary production opens new issues.

	Copper	Cobalt	Nickel	Lithium	REEs	Chromium	Zinc	PGMs	Aluminium
Solar PV	•	0	0	0	0	0	0	0	•
Wind	٠	0	\bigcirc	0	•	\odot	٠	0	\bigcirc
Hydro	0	0	0	0	0	0	\circ	0	\circ
CSP	0	0	•	0	0	•	\bigcirc	0	•
Bioenergy	•	0	0	0	0	0	\bigcirc	0	\circ
Geothermal	0	0	٠	0	0	•	0	0	0
Nuclear	0	0	0	0	0	0	0	0	0
Electricity networks	•	0	0	0	0	0	0	0	•
EVs and battery storage	•	•	•	•	•	0	0	0	•
Hydrogen	0	0	•	0	\bigcirc	0	0	•	•

Source: IEA 2021.

The mineral intensity of green innovation

Batteries

The direction of innovation

- Mapping Critical Raw Materials in Green Technologies.
- Francesco De Cunzo (in collaboration with Davide Consoli, François Perruchas and Angelica Sbardella) develops an empirical analysis of the relationship between CRMs and clean technologies + focus on the producer vs innovative countries
- Method: Text mining in green patent abstracts + CRMs production [data 1998-2017]

Which green technologies rely more intensively on CRMs

Which countries are more exposed to green technology-driven demand for CRMs?

UNIVERSITÀ DI PISA

Clean energy technologies and critical raw materials | Simone D'Alessandro

From the automotive sector to sustainable mobility

- Automotive is anticipating the transition
- It increases competition inside the EU Single Market (es. Gigafactories)
- It does not seems capable to re-assorbe the employment of the sector (IMF, 2023)
- The private car model is not compatible with the supply of CRMs but also decarbonization targets
- But cars are a tool to meet our mobility need. Mobility can be differently organized, changing the system from the supply chain to the consumption patterns

Source:Bartz/Stockmar, CC BY-SA 4.0

Exit fom the technological bubble

- The faith in innovation can reduce the effectivness of our new worldviews
- We are at risk of entering a paved terrain that does not produce the promise prosperity
- The decline of Europe needs political decisions based on a holistic and systemic view where social innovations are crucial as well as technical ones
- Otherwise the achievement of SDGs and their coehrence is strongly threatened

Coesione Sociale nella Transizione Ecologica

The Project

Policies aimed at tackling climate change can raise social and distributional issues, which may become an obstacle to the low-carbon transition. The Ecohesion project explores the relationship between climate and energy policies, structural change in the economy, and redistributive mechanisms. Taking a multidisciplinary systemic approach, Ecohesion aims to facilitate policymaking and support learning through advanced training courses and participatory processes.

Contact:

Simone D'Alessandro University of Pisa

ecoesione@posteo.net https://ecoesione.ec.unipi.it