Towards the use of pricing methods by Transmission System Operators on electricity balancing markets

Rte

Université Paris Dauphine Thesis supervisor : Fabien ROQUES

RTE technical supervisor: Virginie DUSSARTRE & Emily LITTLE

Florent Cogen 25/07/2023

Electricity markets evolution

Re

Literature review on actor behavior modeling in common balancing markets

Balancing Services Providers

Offer upward and downward reserves

Various studies look at the strategic behavior of BSPs:

- Poplavskaya, Lago & De Vries, Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets, 2019
- Koch & Hirth, Short-term electricity trading for system balancing: An empirical analysis of the role of intraday trading in balancing Germany's electricity system, 2019

Transmission System Operators

Create balancing demands on their area

TSOs are always modeled as price takers.

Empirical analysis on operational balancing markets and the French Balancing Mechanism

Are TSOs actually price takers on the TERRE market ?

Distribution of normalized prices of RTE's market orders on TERRE over 2022

Empirical analysis on operational balancing markets and the French Balancing Mechanism

If not, can we identify explanations for this ?

Comparison of BSPs reserves volume submitted to TERRE and on the FrBM over 2022

TSOs can actually compute demand prices based on available alternatives

• Several alternatives exist or will exist, and can induce different pricing methods:

- These pricings methods are also influenced by risk adversion.
- Important remark: By not being price takers, TSOs are not trying to adopt a strategic behavior (to maximise their profits), but rather to accurately reflect their balancing costs.

Introducing the topic of TSO demands formulation on balancing markets, by highlighting the benefits of using an appropriate pricing method associated to a specific alternative to the TERRE market

- Generation plans are created/updated after each market.
- Evolutive view of consumption, wind and solar creates imbalances adressed by Intraday, and eventually Balancing markets

Input data : Energy Pathways to 2050, RTE

Power sys	tem map	(2030)
-----------	---------	--------

Type of unit	Number of unit per area
Thermal	5 up to 20
Hydraulic	1 reservoir, 1 STEP
Wind	1
Solar	1
Storage	1 EV, 1 Battery
P2G	1
Other (non dispatchable)	1 hydraulic ROR, 1 other
Load	1

Power system unit types

Methodology : Studied pricing methods and scenarios

At all cost

2 pricing methods compared

Re

$$p_{o_{AAC,t}} = \pm 10,000 \in /MWh$$

Deterministic

Time

Leading to 3 scenarios, including a benchmark	Scenario	Percentage of BSP orders formulated on TERRE	TSO pricing method
	Basecase AAC	100%	At all cost
	AAC50	50%	At all cost
	Det50	50%	Deterministic

Results

TERRE market prices for each scenarios

	Studied TSO balancing costs (k€)				
Scenario	RR markets upward costs	RR markets downward costs	Total RR markets costs	Local balancing costs	Total costs
AACBase	6684.3	-3352.9	3,331.4	0	3,331.4
AAC50	7470.7	-3099.9	4,370.8	0	4,370.8
Det50	3327.7	-3097.1	231	3,135	3,365.7

An appropriate pricing method reduces balancing costs, eventually reducing social costs

Future work

Extension of the empirical analysis on RR markets.

Refinements of the example study:

- Inclusion of a pricing that considers mFRR markets as an alternative to RR markets.
- Sensitivity analysis, notably regarding gaming behavior of BSPs and their interaction with pricing methods, or the power system used.

Conclusion and key takeaways

TSOs are not price takers on balancing markets, which is proven by an empirical analysis, and can rely on alternatives to exhibit a demand price.

Given an alternative, an appropriate pricing method seems to yield benefits regarding balancing costs.

TSOs demand orders formulation on balancing markets is a topic of interest and several subjects could be studied:

- **Existing alternatives**, possibly different for each TSO
- **Definition of an optimal pricing method**, that would accurately reflect balancing costs, for a given set of alternatives

Thanks ! Any question ?

Re