

The impact of decarbonising the iron and steel industry on the European power system and its CO₂ emissions in 2030

Authors Annika Boldrini, Derck Koolen

26 July 2023

18th IAEE European Conference, Milan

An integrated system in transition

R.Q. How will the **increased electric load** of the steel industry impact **electricity generation** and the **CO₂ emissions** of the European power system in 2030?

- Industrial decarbonization is known that will have large impact on the power system due to the high potential for decarbonization through direct or indirect electrification.
- Many study perform **power system analysis** with low-carbon industries **in net-zero scenarios** 2050 e.g., Lechtenböhmer et al. (2016), Göransson et al. (2019), Toktarova et al. (2022).
- Many steel companies have announced projects **operating by 2030**
- In 2030, the European power sector will still be undergoing transformations towards decarbonization. RED II and Fit-for-55 package of the EU foresees 40% renewable energy. Although the share will be higher for electricity generation, fossil-based sources will still play a key role in 2030 power production.

Commissi

The decarbonisation of European steel

- Big hype for the hydrogen-based direct reduction of iron ore (H2-DRI-EAF)
 - 2 carbon capture projects
 - 18 hydrogen-based DRI projects

#2

https://www.industrytransition.org/green-steel-tracker/

Download the dataset

Methodology

ANNUAL STEEL ENERGY DEMAND

- Development of three steel scenarios defining technology production portfolios in 2030
 - Brownfield investments
 - Country-specific assumptions
- Calculation of electricity and hydrogen demand per scenario
 - Own calculation of energy intensities per production route at country level taking into account import/export of intermediate products
- Direct CO₂ emission reduction
 - Same method as for energy intensities

POWER SYSTEM MODELLING

- Model METIS European Commission
 - Unit commitment and economic dispatch (UCED) model
 - Country-nodes
 - No H2 transmission in 2030
 - Assessment of power and hydrogen generation, and CO₂ (indirect) emissions

CONTEXT

• MIX-H2 2030 (Fit-for-55) – calibration and modelling

Commissio

Steel production portfolios

ASSUMPTIONS

- *Base*: current pilots and approved decarbonisation projects are online by 2030
- Pace: All projects announced by steel manufacturers are online in 2030 using hydrogen as fuel
- Accelerated: all blast furnaces that require refurbishment before 2030 are replaced by low-carbon technologies

■ BF-BOF ■ BF-BOF-CCUS ■ DRI-EAF ■ H2-DRI-EAF ■ scrap-EAF

Utrecht University

#4

Steel energy demand

Sub-scenarios and data input

2030 MIX-H2		(b)	
		Low prices	High prices
(a)	UCED problem	Reference Base Pace Accelerated	Reference_high Base_high Pace_high Accelerated_high
	UCED problem with capacity expansion	Reference_EXP Base_EXP Pace_EXP Accelerated_EXP	Reference_high_EXP Base_high_EXP Pace_high_EXP Accelerated_high_EXP

- Capacity expansion of renewable and electrolyser in e.g., VSN FR (virtual steel node France)
- From VSN only electricity imports allowed, no export

(b)

Low prices: MIX-H2 prices

Natural gas: $30 \in MWh_{HHV}$ H₂ other supply: $60 \in MWh_{HHV}$ (2.3 \in /kg_{H2})

High prices: price x6
Natural gas: 180 €/MWh_{HHV}
H₂ other supply: 260 €/MWh_{HHV}
(10.4 €/kg_{H2})

Total CO₂ emissions variation and CO₂ abatement cost

CO2 abatment costs (power system) - including H2 SMR

▲ CO2 abatment costs (Power system) - excluding H2 SMR

Uncertainties in future steel production and H₂ supply

Steel making technological portfolio

- Future of the European iron and steel industry production levels
- Green- vs. brownfield
- The advent of other technologies at commercial scale e.g., electrowinning

Interaction of the industry with the power and hydrogen system

• H_2 other supply $\rightarrow 2$ to $10 \notin kg_{H2}$

Average cost of green hydrogen (number (share) of Valleys)

Key messages

- Steel decarbonization is crucial to achieve the European Green Deal and it is moving at a good pace
- Alignment of decarbonization timelines among sectors is key to avoid CO₂ emissions spill-over. Contract such as PPAs help ensuring the production green steel
- **3.** An integrated approach is needed, which can lead to new opportunities e.g., flexibility for the power system through **demand response** → future study!

#9

Thanks for your attention!

About me:

ANNIKA BOLDRINI – PhD researcher <u>a.boldrini@uu.nl</u>

Copernicus Institute of Sustainable Development – Utrecht University Utrecht, the Netherland

> Joint Research Centre – European Commission Petten, the Netherland

The European iron and steel industry today

Steel manufacturing contributes to **6%** of total European CO₂ emissions and **7%** of final energy consumption

Low carbon iron and steel making routes

Commission

UCED problem

UCED with capacity expansion

Results optimizations

H2 Electrolysis H2 other supply