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Energy System Transition

@ The 4Ds
» decarbonization
decentralization
digitalization
democratization
@ Demand response among end-users
> engage
> activate
> harness
@ Contract design for demand response

> consumption patterns
> population heterogeneity
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Demand Response

o Load shifting/shedding
» minimize impact on comfort
» focus on (ultra) short-run
* 5-10-15 (30) minutes
* repeated engagement
@ Applications
» managing local grid capacity constraints (black outs)
> bid demand flexibility into electricity markets
> price spikes
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Research Project

@ Sloan Foundation Project:
Bilateral Contract Design and Retail Market Development for Flexible Electric Power
Systems with Residential Demand-side Participation

@ WSU housed project

@ WSU's Energy System Innovation Center and Smart City Testbed.

» integrated Energy/Distribution Management System
> integrated with a complete city feeder model

@ WSU's Center for Institutional Research Computing (CIRC).

» Kamiak condominium HPC
» 3800+ CPU cores in 70+ computational nodes
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Nonintrusive Usage Detection

Utilize smart meter data

Aggregate consumption in 5 minutes intervals

Access to meter readings for some 16 000+ customers
Model individual consumption patterns

Want to detect HVAC/hot water heater usage
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Pecan Street Data
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Pecan Street Data

@ Pecan Street data:

» publicly available data
» 25 houses in Austin, TX

@ Behind the meter readings

> intrusive experimental setup
» detailed information
» 1-minute resolution

@ Known usage

@ Using for verification
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Load and HVAC
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Machine Learning

@ Model individual household consumption patterns

@ Large volumes of data
@ Machine learning

> statistics/mathematics
» computer algorithms

Econometrics
» structural models

@ Oxymoron: structural machine learning
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Switching Regression

Consumption data from meter readings, high time resolution

°
@ Consumption depends on unobserved household activities
@ Model activities as hidden states
@ Activities change over time

> transitions from state to state
@ Model as time-varying hidden Markov model

» Hamilton (1989) regime-switching article
» Bengio and Frasconi (1996) input-output HMM

Consumption is a switching (Tobit) regression model
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Hidden Markov Model
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Output Hidden Markov Model (switching regression model)
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Input-Output Hidden Markov Model
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Model Estimation

Input-output Hidden Markov Model
Observed consumption: Tobit model

State transition probabilities: multinominal logit

Joint estimation of all parameters

» EM algorithm (Baum-Welch)
» Custom code in Python
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Transition Probabilities
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EM Estimator
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Python Code

@ Object based
@ Vectorized
@ Modular

> RegModel
* Tobit
* multinominal logit

» HiddenMarkovModels

* static transition matrix
* variable transition matrix

» TobitlOModel
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Predicted Consumption

Pecan Street data: 24 houses

Focus on summer months (some 200 000 obs)

°
°
e Typically 6-9 (6) states sufficient
o Get predicted consumption {§

@ Get predicted probabilities 7t}

°

Averaged prediction
0c=) ™0}
S

@ Substantial improvement in prediction
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Load Prediction
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State Predictions

o AC states are clearly identifiable (for 22 houses)
» 2-4 “AC" states
» Captures 90-97% of all true AC states
» Tracks actual load very well
@ Indentification of AC states
» classification
* random forest
* logit
» decision trees
* fast-and-frugal (decision tree)

WASHINGTON STATE
@ UNIVERSITY
A 4

Bergland (WSU/NMBU) Demand Response Estimation |AEE, 2023 24 /32



State Predictions
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Revealed Valuation

@ Take AC state(s) T away in period t
@ Get new predicted probabilities 7t}
@ Averaged prediction
Ge=) MY
s#T
@ Change in load is
Ay T =G — e

@ Revealed choices with implicit valuation

WTP(AC:) > ptAyy "

Estimated as a probit/censored regression model (Cameron approach)
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Predicted Demand Response

Consider a situation: (z,x)

Predict probability of states (limiting distribution of MC)
Predict quantities (Tobit)

Predict probability of AC “on”

Predict expected AC (controllable) load

Predict valuation of load

Repeat for n households

Results in a demand response supply curve
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AC “on” Probability
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Expected AC Load
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Expected Demand Response Curve
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Conclusions

Smart meter data is an emerging data source
IOHMM can be used to detect consumption patterns

°
°
o Classification of states into flexible/non-flexible
@ Estimate reservation prices

°

Provides a foundation for

» creating demand response supply functions
> designing contracts
» identifying potential participants
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