

A switching regime model for the marginal emission factor MEF estimation

Souhir Ben Amor, Smaranda Sgarciu, Taimyra Batz, Felix Müsgens.

18th IAEE European Conference Milan, 24-27 July, 2023 – Bocconi University

Brandenburgische Technische Universität Cottbus-Senftenberg Chair of Energy Economics

The Marginal origin of electricity!

- The marginal power plants can react quickly to changes in electricity demand (e.g.gas turbine),
- Cannot be a wind turbine or solar cells,
- Generation systems are called upon in a specific order of increasing cost

The "merit order curve" [Corradi (2018)]

Brandenburgische

Technische Universität Cottbus - Senftenberg

Motivation

The marginal carbon emissions!

The quantity should guide our choice as a flexible consumers,
When is better to charge?
What kind of generation would be marginal at a given time?

Technische Universität Cottbus - Senftenberg

The Marginal Emission Factor: Definition

- The metric that estimates the CO2 intensity of a demand change
 A function of the specific CO2 intensity of the individual generators that respond to that change
- The change in CO2 emissions relates to a unit change in electricity demand,
 - Assumed to be no structural change in the electricity system being analysed (i.e. no power station commissioning or decommissioning, no fuel price changes, etc.).
- Gain valuable insights into how our electricity consumption choices impact CO2 emission.

Brandenburgische

Technische Universität Cottbus - Senftenberg

The Marginal Emission Factor: Interest

- Crucial for performance assessment
 - Leads to decisions regarding the relative merits of CO2 reduction strategies.
- Indicates which interventions are the most potent in terms of climate change mitigation.
- Some Common situations
 - Comparing what times are best to use or store energy
 - Comparing where is best to site a new energy asset.
 - Evaluating electrification.
 - Evaluating low-emissions energy sources
 - Design policy

Outline

- 1. Motivation 🖌
- 2. Proposed Methodology
- 3. Fundamental model
- 4. Statistical models
- 5. Estimation results
- 6. Conclusion

Brandenburgische

Technische Universität Cottbus - Senftenberg

Proposed models for MEF estimation

Marginal Emission Factors are unobservable

Fundamental Models

- Hourly MEF by ordering the power plants incrementally based on their marginal costs and including an additional unit of demand.
- Methodology is static!

Energy System Model (ESM)

- Hourly MEF by computing the model with one additional unit of demand.
- Emulate energy market principles and dynamics.
- Methodology is time intensive

Statistical model

- Less complex approach
- Linear regression model
- MEF is the slope of the regression line (in average)

Chair of Energy Economics

Coupling Energy System Models

b-tu Brandenburgische Technische Universität

Cottbus - Senftenberg

Proposed model for MEF estimation

- Hawkes (2010, 2014), Seckinger & Radgen (2021), Huber et al. (2021)
- □ Simple linear regression

 $\Delta E_t = \beta_1 \Delta G_t + \varepsilon_t$

Where

 ΔE_t : measures the difference in emissions between two consecutive hours,

 ΔG_t : measures the difference in the generation at a time *t*

 β_1 : The marginal emission factor

 ε_t : the error term

b-tu

Brandenburgische

Proposed model for MEF estimation

Smooth Transition Regression Model (LSTR)

Regime-switching through a nonlinear regression model
 Allows the electricity generation process to switch between normal and high-regimes to capture the structural changes

□The STR model

$$\Delta E_t = \phi z_t + \theta z_t T(\gamma, c, s_t) + \varepsilon_t$$

- $\blacktriangleright \Delta E_t$ is the dependent variable
- $\blacktriangleright z_t$ is a vector of exogenous variables, $z_t = (\Delta G_t)$

 $\blacktriangleright \phi_t$ is a parameter vector of the linear part,

- \triangleright θ_t is a parameter vector of the nonlinear part,
- ► ε_t is an independently and identically distributed noise, $\varepsilon_t \sim i, i, d, (0, \sigma^2)$

Brandenburgische

Smooth Transition Regression Model (LSTR)

□The Transition function: logistic function

$$T(\gamma, c, s_t) = \left(1 + \exp\left\{-\gamma\left(s_t - c\right)\right\}\right)^{-1} \quad \gamma > 1$$

Depends on the transitional variable s_t, the slope parameter γ, and the vector of location parameters c.

- Larger values of γ are associated with more rapid transitions.
- The parameters are optimized using ridge regression to prevent overfitting.

Statistical model input data:

CO2 Emission and Generation (a) data and their variations (b) in 2019

Brandenburgische Technische Universität Cottbus - Senftenberg

b-tu

Estimation results

Statistical model input data:

Statistical model Estimation results:

Model	MSE	MAE	RMSE	
Linear Regression	0,633	0,491	0,795	
Smooth Transition Regression Model	0,344	0,353	0,587	
Kalman filter regression	0,513	0,429	0,683	

Estimation results

Linear regression model

Brandenburgische Technische Universität Cottbus - Senftenberg

Estimation results

Estimated MEFs

MEF_Fund, MEF_OLS, MEF_Kalman, and MEF_LSTR time series in 2019

Model	MEF_Fund	MEF_OLS	MEF_Kalman	MEF_LSTR
Average	0,15	0,58	0,40	0,22

Brandenburgische Technische Universität Cottbus - Senftenberg

Evaluation Results

Model	MSE	MAE	RMSE
MEF_Linear Regression	0,320	0,495	0,566
MEF_Smooth Transition Regression Model	0,093	0,243	0,305
MEF_Kalman filter regression	0,174	0,354	0,418

b-tu Brandenburgische Technische Universität Cottbus - Senftenberg

Conclusion

- ► Hourly historical data for MEF is not available.
- Estimating MEF through a fundamental model is the most accurate existing methodology.
- The fundamental approach to estimate MEF is complex, serves as the benchmark.
- Statistical models offer a less complex alternative.
- ► The LSTR model shows the lowest evaluation metrics.
- Therefore, the LSTR model will be adopted to estimate the MEF, especially when short-term MEF estimation is needed.
- We can confidently rely on the LSTR model and make informed decisions for sustainable energy practices based on its estimations.

References

- Seckinger, N., & Radgen, P. (2021). Dynamic Prospective Average and Marginal GHG Emission Factors –
 Scenario-Based Method for the German Power System until 2050. *Energies*, 14(9), 2527.
- Hawkes, A. D. (2014). Long-run marginal CO2 emissions factors in national electricity systems. Applied Energy, 125, 197-205.
- Huber, J., Lohmann, K., Schmidt, M., & Weinhardt, C. (2021). Carbon efficient smart charging using forecasts of marginal emission factors. *Journal of Cleaner Production*, 284, 124766.
- Hawkes, A. D. (2010). Estimating marginal CO2 emissions rates for national electricity systems. *Energy Policy*, 38(10), 5977-5987.
- Beltrami, F., Burlinson, A., Giulietti, M., Grossi, L., Rowley, P., & Wilson, G. (2020). Where did the time (series) go? Estimation of marginal emission factors with autoregressive components. *Energy Economics*, *91*, 104905.

A switching regime model for the marginal emission factor MEF estimation

Thank you for your attention

18th IAEE European Conference Milan, 24-27 July, 2023 – Bocconi University

Brandenburgische Technische Universität Cottbus-Senftenberg Chair of Energy Economics b-tu