Effects of fossil fuel prices on the Japanese electricity market during crises

Kentaka Aruga,* Md Monirul Isam**, and Arifa Jannat**

*Graduate School of Humanities and Social Sciences, Saitama University

Email: kentaka.aruga@gmail.com

****** Bangladesh Agricultural University

Contents

Background

Study background

• As fossil fuel has been the major production factor for electricity, many studies investigate the fossil fuelelectricity market relationships (Mohammadi, 2009)

Å

• Recent COVID-19 pandemic and Russia-Ukraine war might have influenced the relationship

Saitama University

Å

₿)

Electricity price

Data source for electricity prices

Щ

Å

Study background

- Extra-high voltage contract
 - maximum monthly electricity demand exceeding 2000 kilowatt (kW)
 - for customers such as large factories and railway companies.
- High voltage contract
 - maximum monthly electricity demand is between 50 kW and 2000 kW
 - For companies and small to medium-sized factories
- Low voltage contract

Saitama University

- For demand less than 50 kW
- For normal households, small shops, and so on.

Fossil fuel price

Å

Study background

Å

Å

<mark>Н</mark>

Data source for fossil fuel prices

Å

Å

• LNG

Study background

- Cost, insurance and freight (CIF) price of imported LNG price for Japan
- Coal
 - Australian imported coal price
- Crude oil
 - Dubai Fateh crude oil price

Research objectives

Н

Objectives

- To examine the impact of the recent unstable fossil fuel market on the three different types of electricity contracts in Japan.
- Identify structural breaks in the Japanese electricity prices during 2019-2022 and consider the effects of these breaks if any.

Related studies

Ë

Objectives

- Mohammadi (2009)
 - Identify the existence of long-run relationship between coal, natural gas, and crude oil for the US for 1960-2007.
 - https://doi.org/10.1016/j.eneco.2009.02.0 01
- Bernal et al. (2019)
 - Fossil fuel prices have a positive impact on electricity price in Mexico during 2006:1-2016:1.
 - https://doi.org/10.1108/JES-07-2017-0198
- Aruga (2022)
 - Reduced human mobility during the COIVD-19 reduced electricity demand in Japan
 - https://doi.org/10.3390/jrfm15100422

Methods

Н

Identifying endogenous breaks in the electricity price series

Bai-Perron multiple structural break test with AR(1) model

Â

Investigating the effects of fossil fuel prices on electricity prices

В

Methods

ARDL with control variable (seasonal dummy and breaks)

Saitama University

Unrestricted ARDL model

Å

Å

Ë

 $\Delta electricity_t = a + b_1 electricity_{t-1} + b_2 LNG_{t-1} + b_3 coal_{t-1} + b_3 coal_{$

Methods

$$b_{4}oil_{t-1} + \sum_{i=1}^{p} b_{5i}\Delta electricity_{t-i} + \sum_{i=0}^{q} b_{6i}\Delta LNG_{t-i} + \sum_{i=0}^{r} b_{7i}\Delta coal_{t-i} + \sum_{i=0}^$$

$$\sum_{i=0}^{s} b_{8i} \Delta oil_{t-i} + b_9 summer + b_{10} winter + \sum_{j=1}^{n} b_{11j} break + \varepsilon_t$$

Å

Bai-Perron test

Ÿ

Å

	Extra-high voltage	High voltage	Low voltage	
Break test	Scaled F-stat.	Scaled F-stat.	Scaled F-stat.	Critical Value
0 vs. 1	230.73 **	540.77 **	1331.09 **	18.23
1 vs. 2	33.16 **	159.19 **	37.96 **	19.91
2 vs. 3	34.75 **	120.62 **	269.87 **	20.99
Identified breaks	Oct. 2020, Jul. 2021, May. 2022	Oct. 2019, Apr. 2021, May 2022	Oct. 2019, Apr. 2021, May 2022	

Å

Å

Results

(Å)

Unit root tests

Saitama University

Щ

Variables		Levels			First differences					
	ADF	ZA	KPSS	ADF	ZA	KPSS				
Extra-high voltage	0.945	-2.821	0.211	** -3.245	* -7.199 *	*** 0.160 **				
High voltage	1.362	-1.788	0.211	** -2.999	-8.294 *	*** 0.157 **				
Low voltage	-1.592	-2.786	0.139	* -5.314	*** -5.990 *	*** 0.067				
LNG	-1.679	-4.803 **	0.217	*** -2.495	-6.297 *	*** 0.086				
Coal	-2.030	-4.793 **	0.214	** -6.295	*** -7.558 *	*** 0.125 *				
Crude oil	-1.710	-4.782 **	0.173	** -5.757	*** -6.117 *	*** 0.098				

H

Â

Results

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. All unit root tests are performed with intercept and trend. ADF, ZA, and KPSS represent the Augmented-Dickey–Fuller, Zivot–Andrews, and Kwiatkowski–Phillips–Schmidt–Shin test statistics.

ARDL bound test

Ë

Н

	Extra-high voltage	High voltage	Low voltage
F-statistic	6.73***	7.33***	5.23**
I(O)		4.27, 3.08	
I(1)		5.41, 4.02	

Н

Å

Results

В

Note: *** and ** denote significance at the 1% and 5% levels, respectively. Critical values for the I(0) and I(1) denote those at the 1% and 5% significance levels, respectively.

Long-run coefficient estimation

Å

Å

Results

Å

Saitama University

Models	Variables	Coel	Std.	
Wodels	variables	CUE	Error	
	Const.	4.123	* * *	0.082
	LNG	0.046		0.133
Extra-nign voltage	Coal	0.166		0.052
	Oil	-0.065		0.368
	Const.	6.969	**	2.065
	LNG	0.485	**	0.233
nigri voitage	Coal	-0.217		0.226
	Oil	-0.432		0.345
	Const.	5.818	***	0.390
Louvuoltaga	LNG	0.208	* * *	0.016
LOW VOILage	Coal	-0.147	**	0.061
	Oil	-0.061	**	0.026

Note: *** and ** denote significance at the 1% and 5% levels, respectively.

Short-run coefficient estimation

В

Å

H

Saitama University

		Extra-high voltage		High voltage			Low voltage		
Variable		Coefficient	Std. Error	Coefficie	ent	Std. Error	Coeffici	ent	Std. Error
	ΔLNG	0.017	0.046	0.061	*	0.036	-0.048		0.042
	Δcoal	-0.023	0.044	-0.035		0.034	-0.052	**	0.025
	Δoil	-0.024	0.026	-0.054	* *	0.021	-0.022		0.020
	Winter	0.001	0.012	-0.001		0.011	0.013		0.010
	Summer	-0.004	0.013	-0.024	* * *	0.008	0.013	* * *	0.009
	B1	-0.004	0.029	-0.044		0.026	-0.035		0.022
COVID-19	B2	-0.034	0.025	-0.075	**	0.030	-0.064	**	0.024
Ukrainian war	B3	0.034	0.032	0.054	**	0.024	0.021		0.027

Â

Results

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Cumulative dynamic multiplier: low voltage

В

H

-.04 -.06 -.08 Response -.10 -.12 -.14 -.16 0 1 2 3 8 9 10 11 12 13 14 15 5 Δ

Coal on low voltage contract

Results

Н

Å

Horizon

Horizon

Ë

Conclusions

Å

- An increase in the natural gas price during the 2019-2022 period was driving the electricity price to rise in the long run for the low and high-voltage contracts.
- Electricity price was decreasing during COVID-19 while it was increasing after the Russia-Ukraine war.

Conclusion

Implications

В

• Energy price is susceptible to shocks.

Â

Å

- Importance of providing special subsidies or support to mitigate the shocks on the electricity price.
- Power companies need to diversify their electricity generation mix.

Å

Conclusion

Thank you for your attention!

For further questions: kentaka.aruga@gmail.com

Saitama University